H. HERMANN EHLERS GMBH

DURCHFLUSSZÄHLER · DOSIERSTEUERUNG · VENTILE · ARMATUREN

ISonic 4000

Bedienungsanleitung

INHALT

1. Grund	legende	e Sicherheitshinweise	1
2. Systen	nbeschre	eibung	2
3. Installa	ation		5
3.1	Install	lation mit dem Sensor EchoPod DL-10	5
3.2	Einste	llung Nullpunkt IS-4000	6
4. Elektri:	sche An	schlüsse	11
4.1	Strom	versorgung	11
4.2	Eingai	ngs-/Ausgangskonfiguration (E/A)	12
	4.2.1	Ein- und Ausgangskabelverbindung	14
5. Progra	mmieru	ıng	15
5.1	Haupt	tmenü	17
	5.1.1	Messgerät-Setup	17
	5.1.2	Messung	18
	5.1.3	Eingang und Ausgänge	23
	5.1.4	Gesamtsumme löschen	26
	5.1.5	Kommunikation	27
	5.1.6	Sonstiges	28
	5.1.7	Info	28
	5.1.8	PIN	29
	5.1.9	Login	29
6. Fehler	behebu	ng	30
6.1	LED k	ontrollieren	30
6.2	Die Ele	ektronik des Messgeräts austauschen	31
7. Techni	sche Da	nten	32
8. Progra	mmstru	ıktur	34
9. Durchí	lussmes	sser Modbus Registertabelle 2017-06-29, Version "2.00"	41
9.1	iSonic	Konvertierungstabelle	45
9.2	Benut	zer	45
11. Verka	belung	des IS-4000 mit dem ORION® cellular LTE endpoint	46

1. GRUNDLEGENDE SICHERHEITSHINWEISE

Die Geräte sind nach dem Stand der Technik betriebssicher gebaut und geprüft. Sie haben das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen.

Der Hersteller haftet nicht für Schäden, die aus unsachgemäßem oder nicht bestimmungsgemäßem Gebrauch folgen.

Die Montage, Elektroinstallation, Inbetriebnahme und Wartung des Messgerätes darf ausschließlich durch geeignetes Fachpersonal erfolgen. Weiterhin muss das Bedienungspersonal vom Anlagenbetreiber eingewiesen sein und die Anweisungen dieser Bedienungsanleitung müssen befolgt werden.

Grundsätzlich sind die in Ihrem Land geltenden Vorschriften für das Öffnen und Reparieren von elektrischen Geräten zu beachten.

Installation

Das Gerät nicht auf einem instabilen Platz stellen, wo es fallen könnte.

Das Gerät niemals in der Nähe eines Heizkörpers stellen.

Kabel fern von möglichen Gefahren halten.

Gerät vor Installation erden.

Elektrischer Anschluss

Nur die Art Stromquelle verwenden, die für das elektronische Gerät geeignet ist. Im Zweifelsfall, kontaktieren Sie bitte Ihren Händler. Sicherstellen, dass alle Stromkabel über einen ausreichend großen Nennstrom verfügen.

Alle Einheiten müssen geerdet sein, um das Stromschlagrisiko zu vermeiden.

Wird eine Einheit nicht ordnungsgemäß geerdet, so können Beschädigungen an dieser Einheit oder bei darin gespeicherten Daten auftreten.

Schutzklasse

Das Gerät hat die Schutzklasse IP 67 und muss vor Tropfwasser, Wasser, Öle, etc. geschützt werden.

Setup & Betrieb

Nur jene Steuerungen einstellen, die in den Betriebsanleitungen umfasst sind. Eine unsachgemäße Einstellung von anderen Steuerungen kann zu Beschädigung, nicht ordnungsgemäßem Betrieb oder Datenverlust führen.

Reiniauna

Vor einer Reinigung, Gerät ausschalten und vom Netz entfernen. Mit feuchtem Tuch reinigen. Keine Reinigungsmittel verwenden.

Reparatur von Störungen

Alle Einheiten von der Stromversorgung trennen und sie von qualifiziertem Servicepersonal reparieren lassen, wenn eines der folgenden Probleme auftritt:

- Wenn ein Stromkabel oder ein Stecker beschädigt oder verschlissen ist.
- Wenn eine Einheit nicht ordnungsgemäß funktioniert, obwohl die Betriebsanleitung befolgt wird
- Wenn eine Einheit Regen/Wasser ausgesetzt ist oder wenn eine Flüssigkeit in die Einheit eingedrungen ist
- Wenn eine Einheit fallengelassen oder beschädigt wurde
- Wenn eine Leistungsänderung an der Einheit ersichtlich wird, was auf einen Wartungsbedarf hinweist.

Das Nicht-Beachten dieser grundlegenden Sicherheitshinweise kann zu Gerätefehlern führen oder ernste Verletzungen verursachen.

RoHs

Unsere Geräte sind RoHs-konform.

Batterieentsorgung

Die in unseren Geräten enthaltenen Batterien müssen fachgerecht, gemäß §12 der BattV sowie gemäß nationalem Recht der einzelnen Länder nach der EU-Verordnung 2006/66/EG, entsorgt werden.

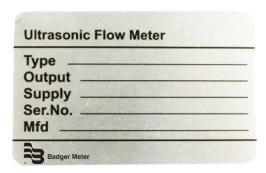
2. SYSTEMBESCHREIBUNG

Das Ultraschall-Durchflussmessgerät IS-4000 wurde für Durchflussmessungen in offenen Kanälen und teilweise gefüllten Rohren sowie für Volumenmessungen von Flüssigkeiten in Tanks entwickelt. Ein Pegelsensor (Ultraschall, Druck, etc.) kann mit einem 4-20 mA-Ausgang an die Einheit angeschlossen werden. Durchflüsse werden folglich von gemessenen Ständen unter Verwendung von vorprogrammierten Formeln für unterschiedliche Primärdurchflusselemente (Rinne, Wehre) oder von der Q/h-Tabelle berechnet. Das Menü ermöglicht auch die Berechnung von Durchfluss-geschwindigkeiten in teilweise gefüllten Rohren und schräg geöffneten Kanälen unter Verwendung der Manning-Gleichung

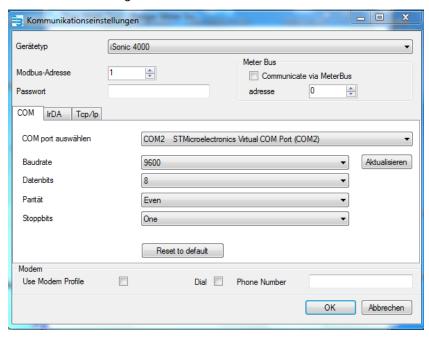
- IS-4000 ist ein IP67-Gerät in einem robusten, an der Wand montiertem Gehäuse mit einem großen grafischen Display.
- Das IS-4000-Menü wird mittels 3 widerstandsfähigen Tasten auf dem Bedienfeld bedient.
- IS-4000 wird mit externem Strom AC 92 275V / 50..60Hz oder alternativ mit externem Strom 9-36 V (max. 9 W) versorgt.
- Der Bediener kann mit IS-4000 mittels USB IP67 oder einer Ethernet-Schnittstelle mit Durchflussmesser-Tool-Software verbunden werden, die zum Parameter-Setup und auch zum Datenlogger-Download verwendet werden kann.
- IS-4000 verfügt über interne Datenlogger mit einer Kapazität von 2 MB für ungefähr 130.000 protokollierte Zeilen. Mit dem Durchflussmesser-Tool können protokollierte Daten heruntergeladen und in *.csv-Format auf dem PC gespeichert werden
- Die Schnittstellen USB IP67, Ethernet, Modbus RS485/RS422, galvanisch getrennt, sind auf der Platine angebracht.
- Die IS-4000-Einheit hat einen Analogausgang 0/4..20mA und 2 galvanisch getrennte Impulsausgänge.

Installation of PC Software

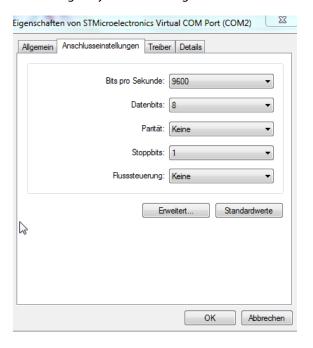
Laden Sie Ihre Software über den QR-Code oder den folgenden Link herunter:


www.badgermeter.com/software-firmware-downloads

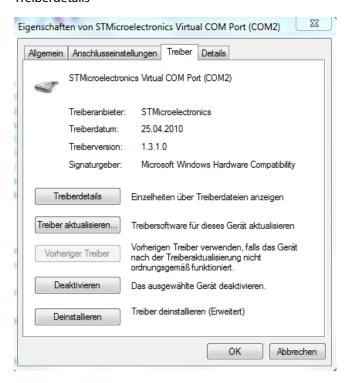
Support finden Sie unter industrial@badgermeter.com

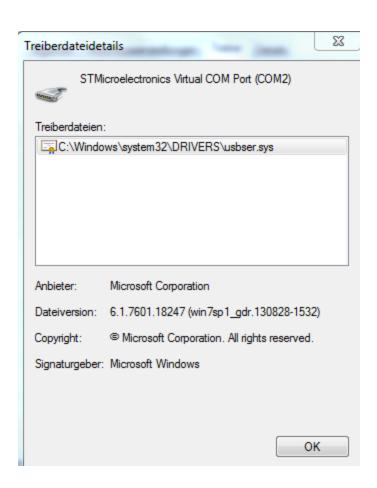

Typenschild

Typenschild des Geräts kontrollieren, um sicherzustellen, dass das Gerät entsprechend Ihrer Bestellung geliefert wurde. Kontrollieren, ob die richtige Versorgungsspannung auf dem Typenschild gedruckt ist.



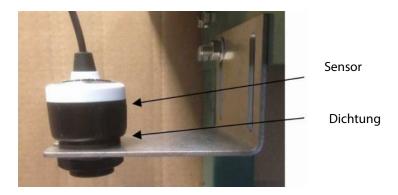
Systemeinstellungen


Durchfluss Einstellungen

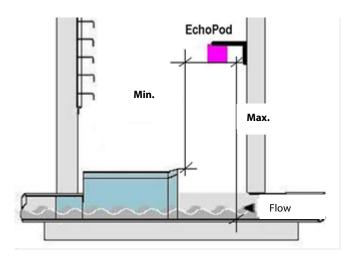


Einstellungen Systemsteuerung

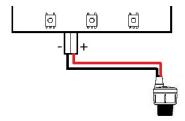
Treiberdetails


3. INSTALLATION

ACHTUNG:

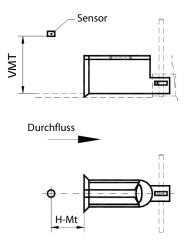

DIE NACHSTEHENDEN INSTALLATIONSANLEITUNGEN MÜSSEN BEFOLGT WERDEN, UM EINE PERFEKTE FUNKTIONSWEISE UND EINEN SICHEREN BETRIEB DES DURCHFLUSSMESSERS ZU GEWÄHRLEISTEN.

3.1 Installation mit dem Sensor

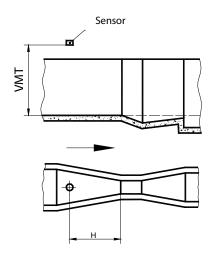


Installation des Sensors:

Den Sensor unter Verwendung der Dichtungen in die Edelstahl-Montagehalterung schrauben.



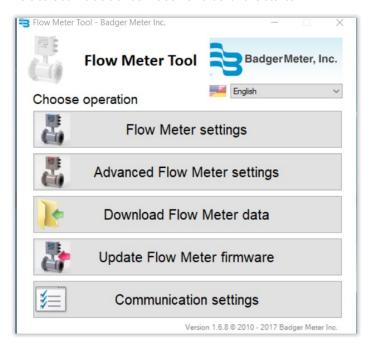
Sensorverbindung an die 4-20 mA-Eingangsklemme (auf der unteren Seite der Anzeigeplatine):


Montageposition des iSonic Ultraschallsensors

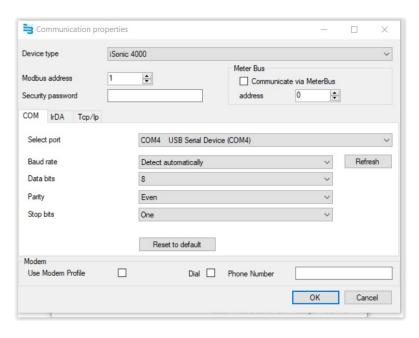
Größe	Max.	Max.	V-Mt	H-Mt
	Durchfluss	Spiegelhöhe		
DN/Zoll	l/sec	mm	mm	mm
100/4"	5	148	600	146
150/6"	16	227	600	197
200/8"	35	312	600	248
250/10"	63	395	700	298
300/12"	94	457	700	349

Montageposition des iSonic Ultraschallsensors

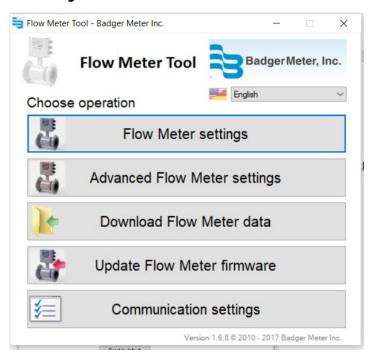
Größe	Max. Durchfluss	V-Mt	H-Mt
DN/Zoll	l/s	mm	mm
75/3"	54	780	305
150/6"	114	780	406
230/9"	284	970	572
305/12"	598	Auf	Auf
		Anfrage	Anfrage
455/18"	94	Auf	Auf
		Anfrage	Anfrage

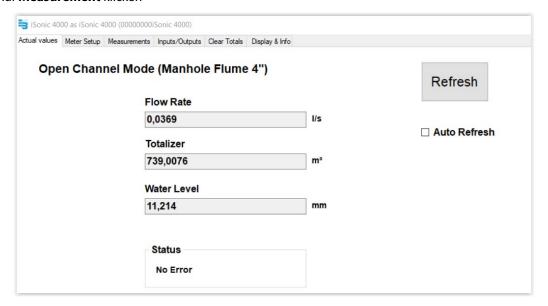


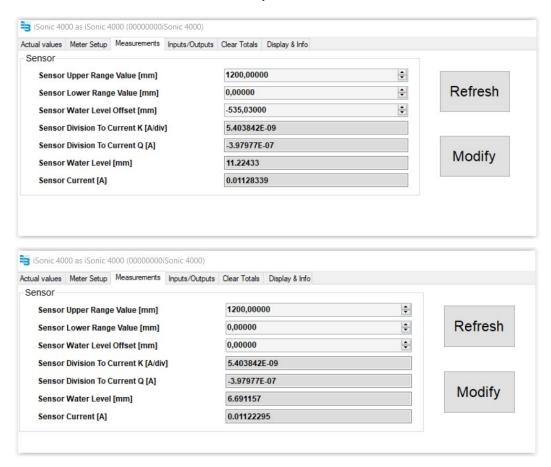
Minimale Montageabstände sind hier für Schacht- und Parshallrinne angegeben.


3.2 Einstellung Nullpunkt IS-4000

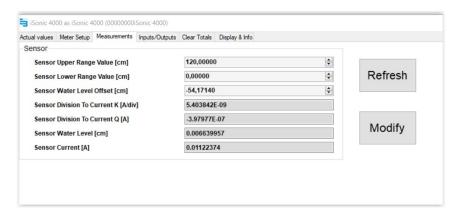
- 1. Empfohlene Installationshöhe des V-Mount Sensors (DL-Serie) für die IS-4000
- 2. Einstellung Nullpunkt mit Hilfe der Software "Flow Meter Tool"


2.1. iSonic an PC mit Hilfe des USB-Kabels anschließen und Software starten


2.2. **Communication Settings** auswählen und **select Port, Baudrate, Databits, Parity, Stop bits** korrekt auswählen und mit **OK** bestätigen.


2.3. Dann auf Flow Meter Settings klicken

2.4. Auf Measurement klicken


2.5. Sensor Water Level Offset auf 0 setzen; Modify und Refresh drücken

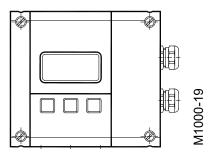
2.6. Angezeigter Wert auf dem Display von IS-4000 auf 0 setzen,

2.7. In Sensor **Water Level Offset** den Wert als Gegenwert (+ zu - / - zu +) eingeben. Gegebenenfalls diesen Vorgang mehrmals mit verschiedenen Werten wiederholen, bis 0 als Level im Display angezeigt wird. Nach jeder Änderung Modify & Refresh drücken;

3. Einstellung Nullpunkt am Gerät mit Hilfe der Tasten

Folgende Tasten drücken:

- **▶** Grundkonfiguration
- Application
- ▲ Sensor
- intervall
- ▲ warm up time
- lower range value
- upper range value
- ▲ offset
- ▶ dann angezeigten Wert eingeben


3x Exit save bestätigen

Schritte wiederholen, bis Level 0 auf Display angezeigt wird

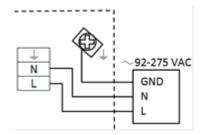
4. ELEKTRISCHE ANSCHLÜSSE

VORSICHT: FÜR DIE 2 X M20-KABELEINLÄSSE NUR FLEXIBLE STROMKABEL VERWENDEN. SEPARATE KABELEINGÄNGE FÜR STROMVERSORGUNGS-, SIGNAL- UND EIN-GANG/AUSGANGKABEL VERWENDEN.

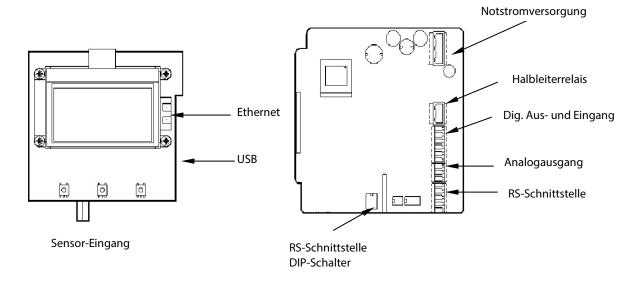
4.1 Stromversorgung

WARNUNG:

MESSGERÄT NICHT UNTER ANGELEGTER NETZSPANNUNG INSTALLIEREN.


NATIONALE ANWENDBARE VORSCHRIFTEN BEACHTEN.

DAS TYPENSCHILD BEACHTEN (NETZSPANNUNG UND FREQUENZ).


DAS GERÄT MUSS MIT EINEM EXTERNEN NETZ INSTALLIERT WERDEN, DAMIT ES VON JEDER STROMVERSORGUNGSQUELLE GETRENNT IST. DIE TRENNVORRICHTUNGEN MÜSSEN ALLE STROMFÜHRENDEN LEITER TRENNEN.

- 1. Die unteren Abdeckschrauben leicht und die beiden oberen Abdeckschrauben vollständig lösen. Die Abdeckung zur unteren Seite öffnen.
- 2. Das Notstromversorgungskabel durch den oberen Kabeleinlass drücken.
- 3. Anschluss laut Abbildung.
- 4. Danach die Anschlussabdeckung wieder fest verschließen.

Stromversorgung 92-275 VAC (50/60 Hz): Empfohlene Kabelgröße mind. 0,75 mm²

4.2 Eingangs-/Ausgangskonfiguration (E/A)

Eingang/Ausgang	Beschreibung			Klemme	
	0 - 20 mA		7 (+)		
Analogausgang*	4 - 20 mARL < 800 Ohm	8 (-)			
	0 - 10 mA			9 (GND)	
Digitalausgang					
	Offener Kollektor max. 10 kHz				
	Passiv max. 32 VDC, <100 Hz 100 mA,			3 (-)	
1*	>100 Hz 20 mA			4 (+)	
	Aktiv 24 VDC, 20 mA			 (+)	
	(kann vom Analogausgang, wenn nicht verwendet, versorgt werden)				
	Offener Kollektor max. 10 kHz				
	Passiv max. 32 VDC, <100 Hz 100 mA,			1 (-)	
2*	>100 Hz 20 mA				
	Aktiv 24 VDC, 20 mA			2 (+)	
	(kann vom Analogausgang, wenn nicht verwendet, versorgt werden)				
	Halbleiterrelais max. 230 VAC, 500 mA, max. 1 Hz			S1 und	
3	(Funktion ist mit Ausgang 2 verbunden)			S2	
Digitaleingang*	5 - 30 VDC		5 (-) und 6 (+)	
RS-Schnittstellen*	RS232, RS485 und RS422 mit Modbus RTU.	422	232	485	
	Modus kann durch DIP-Schalter eingeschaltet werden, auch wenn	422	232	403	
	Anschluss EIN oder AUS ist. Im Fall des RS485 muss Draht A mit	Α	RxD		
	Klemme Y verbunden werden und Draht B muss mit Klemme Z	,,	1000		
	verbunden werden.	В			
	on RS 232	_			
		Z	TxD	В	
		Υ		А	
	off 1 2 3 4	I		A	
	on RS 422 Term. OFF		G (GND)		
	off 1 2 3 4				
	on RS 485				
	Term. OFF				
	off 1 2 3 4				
	on RS 485				
	Term. ON				
	off 1 2 3 4				
	onRS 422				
	Term. ON				
	off 1 2 3 4				
USB	USB-Gerät CDC (Host-Massenspeicher)		<u> </u>	Micro-USB	
	·				
Ethernet*	Ethernet-Schnittstellenverbindung		R.	145-Buchse	
*	alle gekennzeichneten Ein- und Ausgänge entsprechen den Sicherheitsd	aten TN\	/-1 IEC 60	950-1	

4.2.1 <u>EIN- UND AUSGANGSKABELVERBINDUNG</u>

Für die normalen E/As, abgeschirmte Kabel verwenden. Die Abschirmung des Kabels mit einer der Erdungsschrauben verbinden. Empfohlene LiYCY-Kabelgröße min. 0,14 mm².

Halbleiterausgang

Wenn die zweite Kabelverschraubung für die normalen E/As verwendet wird, ein Kabel und eine Kabelverschraubung für die Stromversorgung und das Halbleiterrelais verwenden. Empfohlene Kabelgröße min. 0,75 mm².

VORSICHT:

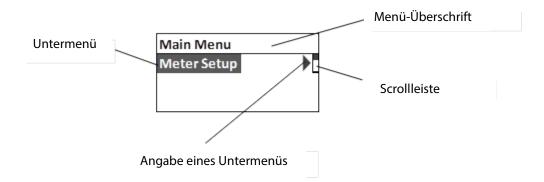
GETRENNTE KABELEINLÄSSE FÜR KABEL VERWENDEN, DIE MIT DEM HALBLEITERRELAISAUSGANG VERBUNDEN SIND, UND KABEL, DIE MIT DEN ANDEREN EINGÄNGEN/AUSGÄNGEN VERBUNDEN SIND.IN MEHRPHASIGEN NETZEN SOLLTE DAS HALBLEITERRELAIS NUR DIE GLEICHE PHASE HANDHABEN, DIE FÜR DIE VERSORGUNG DES MESSGERÄTS VERWENDET WIRD.

5. PROGRAMMIERUNG

Erster Bildschirm - offener Kanal

Volume	305.6 m³	Volumenbezeichnung	Volumenwert	Volumeneinheit	
Level	0.50 m	Wasserstandsbezeichnung	Wasserstandswert	Längeneinheit	
Flow	8.75 m³/s M	Durchflussbezeichnung	Volumetrischer Durchflusswert	Volumetrische Durchflusseinheit	
		Symbole			

Erster Bildschirm - Tank


Volume	50.3 m³	Volumenbezeichnung	Volumenwert	Volumeneinheit	
Level	0.503 m	Wasserstandsbezeichnung	Wasserstandswert	Längeneinheit	
Q T	•	Symbole			

Zweiter Bildschirm

Tag: iSonic 4000		Tag	
20150620	Anwendungsversion		
2015-07-30 10:05 Curren 10.184 mA		Aktuelles Datun	n & Uhrzeit
20112112011111	Aktuelle Bezeichnung	Aktueller Wert	Aktuelle Einheit

Die Programmierung erfolgt mittels Verwendung der drei Funktionstasten ▲, ▶ und Exit/Speichern.

Sie können vom Messmodus zum Programmiermodus durch einmaliges Drücken der Taste Exit/Speichern umschalten.

Mit der Taste ▲ bewegen Sie sich in der Liste nach unten. Mit ▶ oder mit der Taste Exit/Save können Sie auf das Menü zugreifen oder zum nächsten Untermenü weitergehen. Die Scrollleiste oben rechts zeigt an, wo Sie sich derzeit in der Liste befinden. Um von einem Untermenü zum Obermenü zurückzugehen, Exit/Speichern drücken.

Für die Auswahl von Parametern oder Werten aus einer Liste in einem Menüpunkt, die Taste ▲ drücken, bis der erforderliche Parameter oder Wert angezeigt wird und mit der Taste Exit/Speichern bestätigen. Die aktuelle Zahl in der Liste ist mit einem ■ auf der linken Seite gekennzeichnet. Zum Beispiel ■ Parsh.-Rinne2"

Für die Änderung eines Parameters, auf das Menü durch Drücken der Taste ▶ zugreifen und das erste Zeichen blinkt. Die Taste ▲ zum Ändern der Zahl drücken. Wenn Sie die gewünschte Zahl geändert haben, mit der Taste ▶ zur nächsten Zahl weitergehen. Den neuen Wert mit der Taste Exit/Speichern bestätigen.

*Bedeutung der Symbole auf dem Display

	Geringe Batterieleistung (Echtzeituhr)	w	Sensorwarnung
lack	Gerätefehler	0	Sensor nicht verbunden
ð	Kein Stichwort aktiv	М	Sensormessung
•<-	USB aktiv	s	Simulation aktiv

Sie haben Zugang auf die einzelnen Menüs durch drei programmierbare Zugangs-ebenen: Administrator-, Service- und Benutzerebene.

Zugangsrechte der einzelnen Menüelemente werden nachstehend mit drei Symbolen dargestellt:

Für die Programmierung der Zugangsebenen, siehe Kapitel "Passwörter". Es wurden keine Passwörter eingestellt.

5.1 Hauptmenü

Die folgenden Menüelemente sind für Sie im Hauptmenü verfügbar:

- Messgerät-Setup
- Messungen
- Eingänge und Ausgänge
- Totalisator-Reset
- Kommunikation
- Sonstiges
- Informationen
- PIN

5.1.1 <u>MESSGERÄT-SETUP</u>

Anwendung	Auswah	ıl zwischen Messung von Tank und Offenem Kanal
		Tank
A		Offener Kanal
Sensor	Intervall	Setup von Zeitmessintervall (s) — Standardwert ist 1 Sekunde, größeres Intervall (z.B. 300 Sekunden) wird eingestellt, wenn die Einheit durch eine Batterie versorgt wird.
	Anlaufzeit	Anlaufzeit von Sensor (s) vor Messung. Für größere Intervalle als 1 Sekunde, wird eingestellt, wenn die Einheit durch eine Batterie versorgt wird.
	Messanfang	Der Mindeststandwert des verwendeten Sensors =4 mA in ausgewählten Standeinheiten.
	Messende	Der Höchststandwert des verwendeten Sensors =20 mA in ausgewählten Standeinheiten. Für einen DL10 Sensor, eingestellt auf 125 mm (49,2") Für einen DL24 Sensor, eingestellt auf 3000 mm (118,1") Für einen ULM 53, eingestellt auf 3 m (9,8") Für einen ULM 70, eingestellt auf 2 m (6,6") Stellen Sie die Einheiten in Parameter Länge im Menü Messung ein.
	Offset	Stand-Offset in gewählten Standeinheiten hängt von der Montageposition des Sensors ab. Wenn der Sensor niedriger als die angegebene Höhe montiert ist, geben Sie die Differenz als negativen Offset ein.

5.1.2 MESSUNG

Länge

Bei den Längeneinheiten können Sie unter den nachstehend angeführten Einheiten auswählen. Längenwerte werden automatisch in die gewählte Einheit umgewandelt.

	Einheit
ft	Fuß
m	Meter
in	Inch
cm	Zentimeter
mm	Millimeter

<u>**Dezimalstellen**</u> – Einstellung der Dezimalstellen der Längenwerte

Durchflussgeschwindigkeit

Bei den Durchflussgeschwindigkeitseinheiten können Sie unter den nachstehend angeführten Einheiten auswählen. Durchflussgeschwindigkeitswerte werden automatisch in die gewählte Einheit umgewandelt.

	Einheit		Einheit
l/s	Liter/Sekunde	gal/s	Gallonen/Sek.
l/min	Liter/Minute	g/min	Gallonen/Min.
l/h	Liter/Stunde	gal/h	Gallonen/Stunde
m³/s	Kubikmeter/Sek.	MG/d	Megagallone/Tag
m³/min	Kubikmeter/Min.	IG/s	UKG/Sek.
m³/h	Kubikmeter/Stunde	IG/min	UKG/Min.
ft ³ /s	Kubikfuß/Sek.	IG/h	UKG/Stunde
ft³/min	Kubikfuß/Min.	Bbl/min	Fass/Min.
ft³/h	Kubikfuß/Stunde		

<u>Dezimalstellen</u> – Einstellung der Dezimalstellen der Durchflussgeschwindigkeitswerte

Volumen

Bei den Volumeneinheiten können Sie unter den nachstehend angeführten Einheiten auswählen. Volumenwerte werden automatisch in die gewählte Einheit umgewandelt.

	Einheit		Einheit
L	Liter	MG	Megagallonen
hl	Hektoliter	IG	Britische Gallonen
m³	Kubikmeter	bbl	Fass
Ft ³	Kubikfuß	Aft	Acre-Feet
gal	US-Gallonen		

<u>Dezimalstellen</u> – Einstellung der Dezimalstellen der Volumenwerte

Gleichung Auswahl

Tabelle	Notiz: Q/h-Tabelle — nur möglich von Software Durchflussmesser-Tool
Exponentielle Gleichung	Exponentialfunktion Q= K h exp
Zusammengez. Wehr	Zusammengezogenes Wehr
Contracted Weir	Contracted Weir
Cipolletti Wehr	Cipolletti Wehr
V Notch Wehr 30°	V Notch Wehr 30°
V Notch Wehr 45°	V Notch Wehr 45°
V Notch Wehr 60°	V Notch Wehr 60°
V Notch Wehr 90°	V Notch Wehr 90°
Manning rectangle flume	Manning rectangle flume
Manning Rohr	Manning Rohr
Parshall Messrinne 1"	Parshall Messrinne 1"
Parshall Messrinne 2"	Parshall Messrinne 2"
Parshall Messrinne 3"	Parshall Messrinne 3"
Parshall Messrinne 6"	Parshall Messrinne 6"
Parshall Messrinne 9"	Parshall Messrinne 9"
Parshall Messrinne 12"	Parshall Messrinne 12"
Parshall Messrinne 18"	Parshall Messrinne 18"
Parshall Messrinne 24"	Parshall Messrinne 24"
Parshall Messrinne 36"	Parshall Messrinne 36"
Parshall Messrinne 48"	Parshall Messrinne 48"
Parshall Messrinne 60"	Parshall Messrinne 60"
Messschachtrinne 4"	Messschachtrinne 4"
Messschachtrinne 6"	Messschachtrinne 6"
Messschachtrinne 8"	Messschachtrinne 8"
Messschachtrinne 10"	Messschachtrinne 10"
Messschachtrinne 12"	Messschachtrinne 12"

Gleichungsparameter

Exponentenwert für Gleichung (Q= K h exp)	Exponent
Koeffizientenwert für Gleichung (Q= K h ^{exp})	Koeffizient
Gemessene Profilbreite (Rinnen, Manning-Gleichung)	Breite
Rechteckiger Profilneigungswinkel (Manning-Gleichung)	Winkel
Gemessener Rohrradius (Manning-Gleichung)	Radius
Wasserspiegelgefälle (Manning-Gleichung)	Wasserspiegelgefälle
Oberflächenrauhigkeitskoeffizient (Manning- Gleichung)	Oberflächenrauhigkeitskoeffizient
Wasserhöchststand	Wasserhöchststand
Durchflussgeschwindigkeit Messende	Messende

Wasserhöchststand/Einstellungsstandardwert

 $Einstellung \ des \ Wasserhöchststands \ für \ das \ gewählte \ Prim\"{a}relement - der \ Wert \ kann \ weiterbearbeitet \ werden.$

Messende/Berechnen

Berechnet den maximalen Durchflussgeschwindigkeitswert für den Wasserhöchststand - der Wert kann weiterbearbeitet werden - dieser Parameter wird auch für Ausgänge verwendet (Messende=100% - ganze Breite)

Berechnung Offener Kanal

Volumetrischer Durchfluss wird vom tatsächlichen Wasserstand berechnet, der tatsächliche Wasserstand wird durch den "Wasserhöchststand" beschränkt.

Exponentielle Gleichung (allgemeine Parshall- oder Messschachtrinne)

Gleichung Q=K.Qexp

Q - Volumetrischer Durchfluss [m³/s]

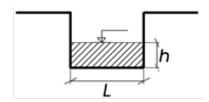
K – Koeffizient []

h – Wasserstand [m]

exp – Exponent [-]

Vordefinierte Rinne	Gleichung [m³/s, m]	Wasserhöchststand [m]
Parshall Messrinne 1"	$\mathbf{Q} = 0.0604 \cdot h^{1.55}$	0,230
Parshall Messrinne 2"	$\mathbf{Q} = 0.1207 \cdot h^{1.55}$	0,260
Parshall Messrinne 3"	$\mathbf{Q} = 0.1771 \cdot h^{1.55}$	0,667
Parshall Messrinne 6"	$Q = 0.3810 \cdot h^{1.58}$	0,724
Parshall Messrinne 9"	$\mathbf{Q} = 0.5350 \cdot h^{1.53}$	0,876
Parshall Messrinne 12"	$\mathbf{Q} = 0.7050 \cdot h^{1.55}$	0,925
Parshall Messrinne 18"	$\mathbf{Q} = 1.0670 \cdot h^{1.55}$	0,925
Parshall Messrinne 24"	$\mathbf{Q} = 1.4290 \cdot h^{1.55}$	0,925
Parshall Messrinne 36"	$\mathbf{Q} = 2.1900 \cdot h^{1.57}$	0,925
Parshall Messrinne 48"	$\mathbf{Q} = 2.9600 \cdot h^{1.58}$	0,925
Parshall Messrinne 60"	$\mathbf{Q} = 3.7500 \cdot h^{1.59}$	0,925
Messschachtrinne 4"	$\mathbf{Q} = 0.2343 \cdot h^{1.95}$	0,149
Messschachtrinne 6"	$\mathbf{Q} = 0.3026 \cdot h^{1.95}$	0,227
Messschachtrinne 8"	$\mathbf{Q} = 0.3424 \cdot h^{1.95}$	0,313
Messschachtrinne 10"	$\mathbf{Q} = 0.3868 \cdot h^{1.95}$	0,396
Messschachtrinne 12"	$\mathbf{Q} = 0.4345 \cdot h^{1.95}$	0,457

Contracted rectangular weir


Gleichung $Q = 1.84 \cdot (L - 0.2 \cdot h) \cdot h^{1.5}$

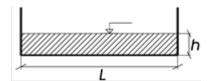
Q – Volumetrischer Durchfluss [m³/s]

1,84 – Koeffizient [$\sqrt{m/s}$]

L – Breite [m]

h – Wasserstand [m]

Suppressed rectangular weir


Gleichung $Q = 1.84 \cdot L \cdot h^{1.5}$

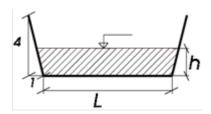
Q – Volumetrischer Durchfluss [m³/s]

1,84 – Koeffizient $[\sqrt{m}/s]$

L – Breite [m]

h – Wasserstand [m]

Cipolletti Wehr

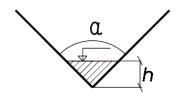

Gleichung $Q = 1.84 \cdot L \cdot h^{1.5}$

Q – Volumetrischer Durchfluss [m³/s]

1,84 – Koeffizient $[\sqrt{m}/s]$

L – Breite [m]

h – Wasserstand [m]


V-notch Wehr 30°

Gleichung
$$Q = \frac{8}{15}\sqrt{2 \cdot g} \cdot \tan\left(\frac{30^{\circ}}{2}\right) \cdot 0.586 \cdot (h + 0.0021)^{2.5}$$

Q – Volumetrischer Durchfluss [m³/s]

g – Standard-Erdbeschleunigung 9,80665 [m/s²]

h - Wasserstand [m]

V-notch Wehr 45°

Gleichung
$$Q = \frac{8}{15} \sqrt{2 \cdot g} \cdot \tan \left(\frac{45^{\circ}}{2} \right) \cdot 0.580 \cdot (h + 0.0015)^{2.5}$$

Q – Volumetrischer Durchfluss [m³/s]

g – Standard-Erdbeschleunigung 9,80665 [m/s²]

h - Wasserstand [m]

V-notch Wehr 60°

Gleichung
$$Q = \frac{8}{15}\sqrt{2 \cdot g} \cdot \tan\left(\frac{60^{\circ}}{2}\right) \cdot 0.577 \cdot (h + 0.0012)^{2.5}$$

Q – Volumetrischer Durchfluss [m³/s]

g – Standard-Erdbeschleunigung 9,80665 [m/s²]

h – Wasserstand [m]

V-notch Wehr 90°

Gleichung
$$Q = \frac{8}{15}\sqrt{2 \cdot g} \cdot \tan\left(\frac{90^{\circ}}{2}\right) \cdot 0.578 \cdot (h + 0.0008)^{2.5}$$

Q – Volumetrischer Durchfluss [m³/s]

g – Standard-Erdbeschleunigung 9,80665 [m/s²]

h – Wasserstand [m]

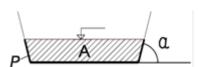
Manning-Gleichung: Q = 1/n Rh 2/3 I1/2 A Rh=A/P

Manning-Rechteck

Gleichung

$$Q = \frac{1}{n} \left(\frac{h \cdot L + \frac{h^2}{tg\alpha}}{\frac{2 \cdot h}{sin\alpha} + L} \right)^{\frac{2}{3}} \cdot \sqrt{I} \cdot \left(h \cdot L + \frac{h^2}{tg\alpha} \right)$$

Q – Volumetrischer Durchfluss [m³/s]


n – Gauckler-Manning-Koeffizient [$s/\sqrt[3]{m}$]

L – Breite [m]

h - Wasserstand [m]

α – Winkel [°]

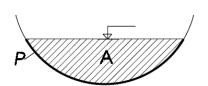
I – Wasserspiegelgefälle [m/m]

Manning Rohr

$$Q = \frac{1}{n} \left(\frac{h \cdot L + \frac{h^2}{tg\alpha}}{\frac{2 \cdot h}{sin\alpha} + L} \right)^{\frac{1}{2}} \cdot \sqrt{I} \cdot \left(h \cdot L + \frac{h^2}{tg\alpha} \right)$$

$$\alpha = \frac{2 \cdot \pi - 2 \cdot arcsin\left(\frac{\sqrt{2 \cdot h \cdot r - h^2}}{r} \right) \mid h > r}{2 \cdot arcsin\left(\frac{\sqrt{2 \cdot h \cdot r - h^2}}{r} \right) \mid h \le r}$$

$$\alpha = \frac{\left(\frac{r}{r}\right)^{r}}{2 \cdot \arcsin\left(\frac{\sqrt{2 \cdot h \cdot r - h^2}}{r}\right) \mid h \le r}$$


Q – Volumetrischer Durchfluss [m³/s]

n – Gauckler-Manning-Koeffizient [$s/\sqrt[3]{m}$]

L – Breite [m]

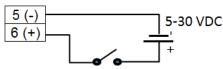
h - Wasserstand [m]

I – Wasserspiegelgefälle [m/m]

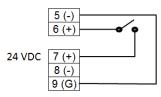
Material	$n[s/\sqrt[3]{m}]$
Glas, PVC	0,010
Zement, Betonstahl, Metall	0,011
Ziegel	0,015
Erde, eben	0,018
Erdkanal - sauber	0,022
Schotter, hart	0,023
Erdkanal - kiesbedeckt	0,025

Material	$n[s/\sqrt[3]{m}]$
Erdkanal - verunkrautet	0,030
Natürliche Wasserläufe – sauber	0,035
Auen - leichtes Buschwerk	0,050
Natürliche Kanäle, schlechter Zustand	0,060
Auen - dichtes Buschwerk	0,075
Auen – Bäume	0,15

5.1.3 <u>EINGANG UND AUSGÄNGE</u>


Analogausgang Bereich	1	Dieser Parameter bestimmt den Bereich des Analogausgangssignals: 0 bis 100% (= Vollskala). Die folgenden Strombereiche sind für Sie verfügbar: Stromausgang 0 bis 20 mA 4 bis 20 mA 0 bis 10 mA Analogausgang aktiv 24 VDC 7 (+) 8 (-) 9 (G) Anmerkung: Wenn eine Fehlermeldung angezeigt wird, wird der Strom entsprechend der Programmierung des "Alarmmodus" unten eingestellt. Wird ein bidirektionaler Betrieb ausgewählt, kann die Fließrichtung über Digitalausgänge signalisiert werden.
Alarm	Modus	Dieser Parameter konfiguriert das Verhalten des Analogausgangs in einem Alarmzustand. Für diesen Parameter gibt es drei Optionen: AUS, 3,5 mA und 23 mA. AUS: Analogsignal basiert auf der Durchflussgeschwindigkeit und ist immer im konfigurierten Bereich. 3,5 mA: Im Alarmzustand ist das Analogsignal 3,5. 23 mA: Im Alarmzustand ist das Analogsignal 23mA. Wenn der Analogbereich beispielsweise 4 bis 20 mA ist und der Alarmmodus auf 23 mA eingestellt ist, dann ist der Analogausgangsstrom bei einer Vollskala-Durchfluss-Alarmbedingung 23 mA.
Kompe	ensation	Korrektur der aktuellen Wertausgabe

Digitaleingang

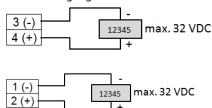


Mit dem Digitaleingang können Sie den Totalisator zurücksetzen, die Durchflussmessung unterbrechen oder den ADE verwenden.

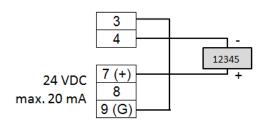
Die Eingangsumschaltung erfolgt durch verwenden einer externen Spannung von 5 bis 30 VDC

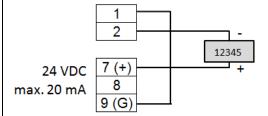
Oder durch eine interne Spannungsversorgung von 24 VDC falls Analogausgang nicht verwendet wird.

Digitalausgänge

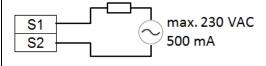


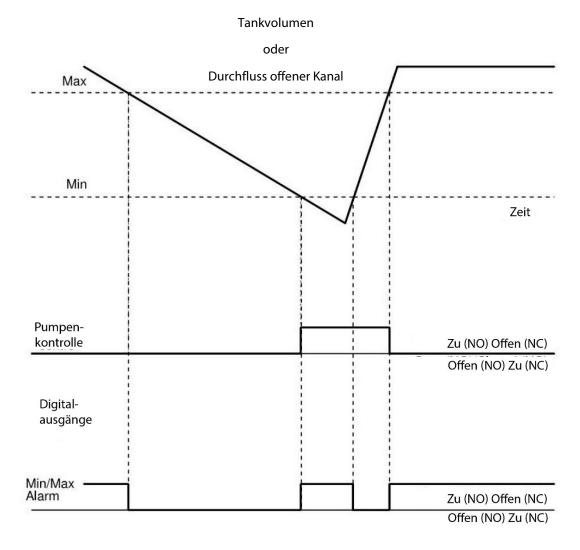
Sie können den Funktionsbetrieb der zwei Digitalausgänge konfigurieren. Sie können z.B. "Vorwärtsimpuls" für den Digitalausgang auswählen und die Impulse pro Totalisatoreinheit über "Impulsskala" definieren.


Digitalausgänge 1 und 2

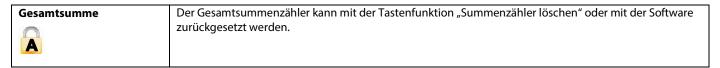

Die beiden Ausgänge können als offener Kollektor passiv oder aktiv betrieben werden.

Passiver Ausgang


Aktiver Ausgang (wenn Analogausgang nicht verwendet wird)



Halbleiterrelais


Das Halbleiterrelais ist mit Ausgang 2 funktionell verbunden. Siehe Funktionen von Ausgang 2.

Digital- ausgänge Impulsbreite Impuls/ Einheit S		Dieser Parameter bestimmt die "Ein"-Dauer des übertragenen Impulses. Der konfigurierbare Bereich geht von 0 ms bis 2000 ms. Wenn 0 ms konfiguriert ist, wird die Impulsbreite abhängig von der Impulsfrequenz (Impuls/Pause-Verhältnis 1:1) automatisch angepasst. Während der Konfiguration des Programms wird kontrolliert, ob Impulse/Einheit und Impulsbreite der definierten Vollskala entsprechen, andernfalls wird ein Fehleralarm angezeigt. Bei einem Fehleralarm müssen die Skala, die Impulsbreite oder die Vollskala angepasst werden.			
	Einheit	Mit dem Parameter Impuls/Einheit können Sie einstellen, wie viele Impulse pro Messeinheit übertragen werden. Die max. Ausgangsfrequenz von 10.000 Impulsen/Sek (10 kHZ) darf nicht überschritten werden.			
	Funktionsauswahl			die Ausgänge 1 bis 2 sowie fü s-Funktion ist mit der Funktio	
		Funktion	Aus1	Aus2 / Halbleiterrelais	
		Aus	X	X	7
		Vorlaufimpuls	X	X	
		Min./Max. Alarm	Х	Х	
		Fehleralarm	Х	Х	
		Pumpenkontrolle	Х	Х	
		Test	Х	X	
Ausgang 1/2 Typ Ausgang 1/2 Min festlegen S Ausgang 1/2 Max festlegen	Ausgang 1/2	eingestelltes Min. oder eingestelltes Max. definierte Schwellen in % der Vollskala überschreitet - siehe nachstehendes Diagramm. Fehleralarm weist darauf hin, dass ein Messgerät in einem Fehlerzustand ist. Pumpenkontrolle startet und stoppt die Pumpe — siehe nachstehendes Diagramm. Test wird nur für das Überprüfungsgerät verwendet. Mit dem Ausgang Typ 1/2 können Sie den Ausgang auf "normal geschlossen" oder "normal			
	S	offen" einstellen.			
	Min festlegen	Diese Funktion ermöglicht die Einstellung des minimalen Prozentbereichs vom vollen Durchfluss als Stellenwert, ab wann ein Alarm nach außen gegeben wird. Die Schwellenwerte können in 1%-Schritten frei gewählt werden. Durchfluss unter oder oberhalb des Schwellenwertes aktiviert den Ausgangsalarm.			
	Max festlegen	Diese Funktion ermöglicht die Einstellung des minimalen Prozentbereichs vom vollen Durchfluss als Stellenwert, ab wann ein Alarm nach außen gegeben wird. Die Schwellenwerte können in 1%-Schritten frei gewählt werden. Durchfluss unter oder oberhalb des Schwellenwertes, aktiviert den Ausgangsalarm.			
Durchfluss- simulation	des Vollskala-Durchflu Simulationsbereich un dann aktiv, wenn Sie a	tion bietet eine analoge und digitale Ausgangssimulation basierend auf einem Prozentsatz usses für die Fälle, in denen kein tatsächlicher Durchfluss vorhanden ist. Der mfasst 0% bis +100% in 10%-Schritten des Vollskala-Durchflusses. Diese Funktion bleibt auch aus dem Menü aussteigen. Für ihre Deaktivierung muss die Funktion auf "Aus" gestellt mulation nach wie vor aktiv ist, wird "S" im Messmodus angezeigt.			

5.1.4 GESAMTSUMME LÖSCHEN

5.1.5 <u>KOMMUNIKATION</u>

Schnittstellen	Modbus RTU	RS232, RS485 und RS422 mit Modbus RTU.	
		RS 422 232 485 A RxD B B Z Z TxD B Y A GND Modus kann durch DIP-Schalter eingeschaltet werden, auch wenn Anschluss EIN oder AUS ist. On RS 232 On RS 422 Term. OFF Off 1 2 3 4 RS 422 Term. OFF	
_	M-Bus	on RS 485 Term. OFF off 1 2 3 4 Optional und erfordert zusätzliche Hardware-Platine	
	(in Bearbeitung) HART (in Bearbeitung)	Optional und erfordert zusätzliche Hardware-Platine	
	Modbus RTU		
	Adresse:	Adresse verfügbar von 1 bis 247	
	RS-232, RS-422, RS-485	BaudRate: 1200, 2400, 4800, 9600, 19200, 38400 Bd Parität: Gerade, Ungerade, Mark, empfangene und gesendete Pakete	
Ethernet	Modbus TCP/IP mit MEAP-Titel		
	IP-Adresse	IPv4-Addressvorgabe 192.168.1.60 als default.	
	IP-Maske	IPv4 subnetting Referenzvorgabe 255.255.255.0 als default.	
	IP-Gateway	Adresszugangsvorgabe 192.168.1.1 als default.	
i	MAC-Adresse	Medienzugangssteuerung	
ADE :	Steuerung	An oder Aus	
	Protokoll	1 oder 2	
	Skala	4 bis 9	
	Auflösung	0,001 / 0,01 / 0,1 / 1 / 10 / 100 / 1.000 / 10.000	

5.1.6 <u>SONSTIGES</u>

Einschaltung	Anzahl der Einschaltungen der Einheit.		
Sprache	Die Einheit unterstützt verschiedene Sprachen:		
	Englisch		
	Deutsch		
	 Tschechisch 		
	Spanisch		
	 Französisch 		
	Russisch		
Datum	Datumseinstellung des Systems im Format [TT.MM.JJ], für Datenprotokollierung verwendet		
Zeit	Uhrzeiteinstellung des Systems im Format [HH.MM.SS], für Datenprotokollierung verwendet		
Kontrast	Der Kontrast des Displays kann zwischen 14 (niedrig) und 49 (hoch) eingestellt werden		
Datenprotokol-	Der Datenprotokollierungszeitraum kann wie folgt eingestellt werden:		
lierungszeitraum	alle 10 Min. / 20 Min. / 30 Min. / 1 Std. / 24 Std.		
	Ein 2 MB-Speicher mit ungefähr 130.000 Datenaufzeichnungen für die Datenprotokollierung ist		
	verfügbar. Die Protokollierungskapazität ist wie folgt (eindirektionaler Modus):		
	Zeitraum von 10 Min. bis zu 2,5 Jahre		
	20 Min. bis zu 5 Jahre		
	30 Min. bis zu 7,5 Jahre		
	1 Std. bis zu 15 Jahre		
	24 Std. bis zu 260 Jahre		
	Die Protokollierungsinformation kann durch ein PC-Programm Durchflussmesser-Tool heruntergeladen werden.		

5.1.7 <u>INFO</u>

Seriennummer	Seriennummer der elektronischen Platine.	
Version	Software-Version des Geräts.	
Komp. Datum	Datum der Software-Version.	
Otp CRC	Prüfsumme der Software-Aktualisierung.	
Anwend. CRC	Prüfsumme der Anwendung.	

5.1.8 PIN

Die unterschiedlichen Menüs und Parametrierungen können über drei Passwortebenen gesichert werden.

Administrator-PIN

Service-PIN

Benutzer-PIN

Der Passwort-Schutz ist eine 6-stellige PIN, die auf [000000] parametriert und im Werk deaktiviert wird.

Das erste Mal die Passwortschutzkontrolle aktivieren = Ein

Beim Login das Passwort 000000 eingeben.

Nun können Sie erneut zur PIN zurückgehen und das [Benutzer]-, [Service]- und [Admin]-Passwort eingeben.

Wenn der Passwortschutz aktiviert wurde, geben Sie bitte Ihre PIN unter Login ein;

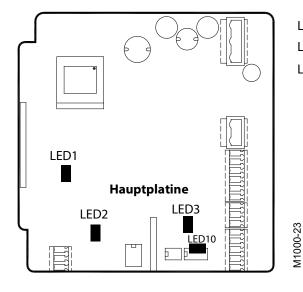
das Symbol (offenes Schloss) erscheint. Mit der PIN haben Sie Zugang zur Administrator-, Service- oder Benutzerebene mit den jeweiligen Zugangsrechten (mit A, S und U (für Benutzer) im Handbuch gekennzeichnet). Sie können nun zum Menü gehen und Ihre Parameter eingeben.

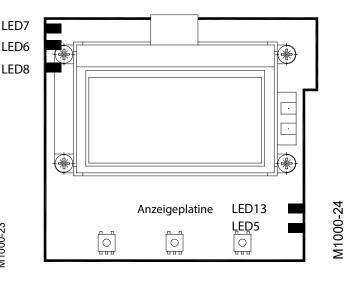
Wenn Sie nicht eingeloggt sind, können Sie alle Parameter lesen. Sie können sie allerdings nicht ändern.

Kontrolle	Die PIN aktivieren und deaktivieren.		
Benutzer	Der mit dieser PIN eingeloggte Benutzer hat Zugang auf alle Benutzerebenen. Benutzer auf dieser Ebe haben keinen Zugang auf Service- oder Admin-Funktionen.		
Service	Der mit dieser PIN eingeloggte Benutzer hat Zugang auf Verfahren der Service- und Benutzerebene. Benutzer auf dieser Ebene hat keinen Zugang auf Administrationsfunktionen.		
Admin	Der mit dieser PIN eingeloggte Benutzer hat Zugang auf Verfahren der Service- und Benutzerebene.		
Random Zahl	Im Falle des PIN-Verlustes, lesen Sie die Randomzahl ab. Diese Nummer muss an den Badger Meter Support gesendet werden, damit ein Master-PIN generiert werden kann. Während dem Auslesen der Randomzahl und der Eingabe des Master-PIN, keine weiteren PINs eingeben. und starten Sie nicht den Zähler neu.		
Notfall-PIN	Im Falle des PIN-Verlustes, lesen Sie die Randomzahl ab. Diese Nummer muss an den Badger Meter Support gesendet werden, damit ein Master-PIN generiert werden kann. Während dem Auslesen der Randomzahl und der Eingabe des Master-PIN, keine weiteren PINs eingeben. und starten Sie nicht den Zähler neu.		

5.1.9 <u>LOGIN</u>

Login	Sobald der Passwortschutz aktiviert wurde, geben Sie bitte Ihre PIN ein.
-------	--

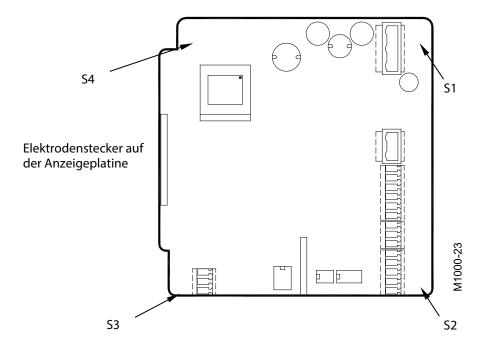

6. FEHLERBEHEBUNG


Die folgenden Fehlermeldungen können angezeigt werden:

Beschreibung	Mögliche Ursache	Empfohlene Maßnahme
Impulsausgang	Impulsrate hat das Maximum überschritten	Impulsskala (Impuls/Einheit) reduzieren bzw.
		Impulsbreitenkonfiguration reduzieren
EEPROM	Konfigurationsdatei fehlt	Transmitter ersetzen
Konfiguration	Konfigurationsdatei ist beschädigt	Firmware aktualisieren. Tauschen Sie den Sender aus,
		wenn sich der Fehler wiederholt.
Niedriger	Niedriger Puffer-Batterieladestand (Speicher)	Transmitter ersetzen
Batterieladestand		
Messung	Messung wurde nicht in der spezifischen Zeit	Erhöhen Sie die Aufwärmzeit im Menü
Zeitüberschreitung	ausgeführt	"Messgerät-Setup" > "Sensor".
		Betrieb und Verkabelung des Füllstandssensors prüfen.

6.1 **LED** kontrollieren

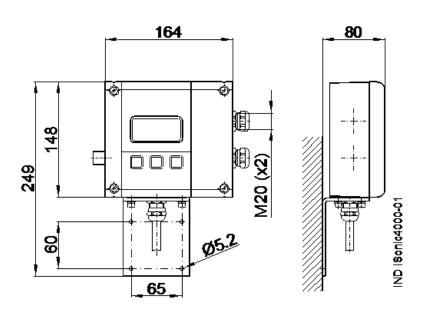
Es gibt verschiedene LEDs auf der Platine, um den Betrieb des Geräts zu kontrollieren. Siehe die nachstehenden LEDs und ihre Bedeutung.



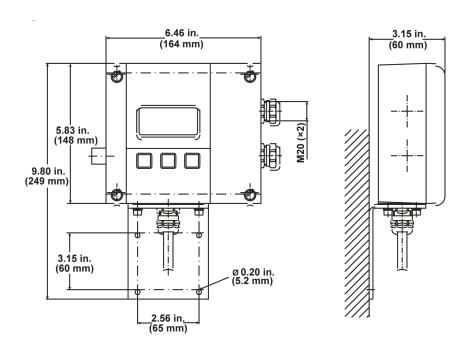
- Keine Funktion verbunden LED1
- LED3 Kommunikation – übertragen (Ein = aktiv)
- LED5 Flash-Speicheraktivität (DISKETTE)
- LED6
- Digitalausgang Nr. 1 (Ein = aktiv) Digitalausgang Nr. 2 (Ein = aktiv) LED7
- Keine Funktion verbunden LED8
- Eingeschaltet (Ein = aktiv) LED10
- LED13 USB, HOST-Modus (Ein = aktiv)

Die Elektronik des Messgeräts austauschen **6.2**

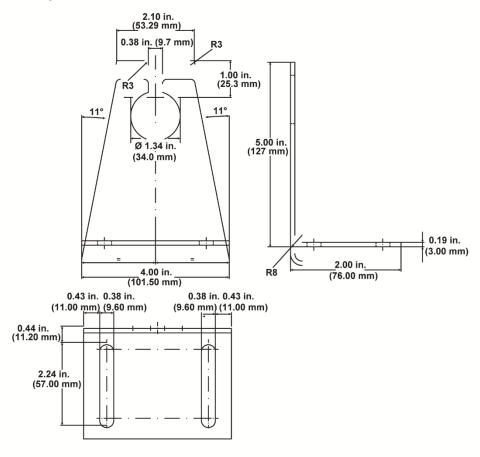
NOTSTROMVERSORGUNG TRENNEN, BEVOR DIE GERÄTEABDECKUNG GEÖFFNET WIRD. **WARNUNG:**

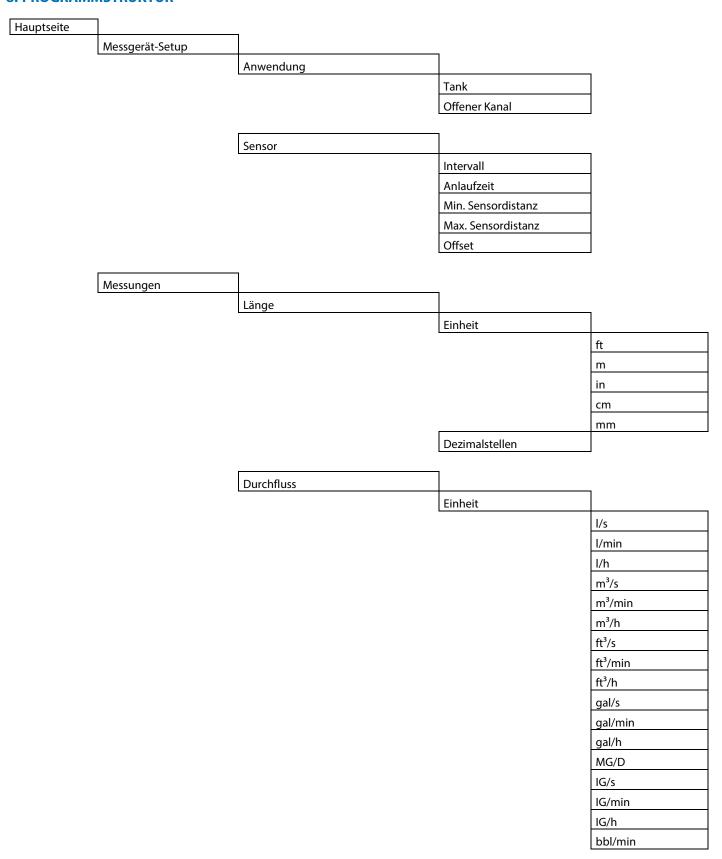


- Alle Stecker herausziehen. Die Schrauben S1-S4 lösen und die Leiterplatte entnehmen. Eine neue Leiterplatte einfügen und sie durch Anziehen der Schrauben S1-S4 befestigen. Alle Stecker wieder anschließen.
- Ggf. neue Platine konfigurieren.


7. TECHNISCHE DATEN

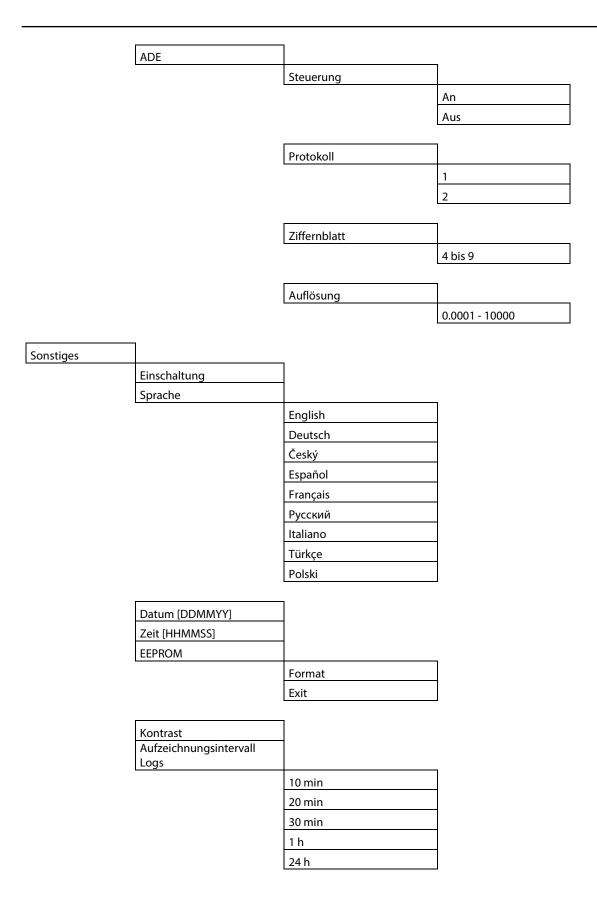
Тур	IS-4000	
Notstromversorgung	92-275 VAC (50 / 60 Hz), < 14 VA	
Analogausgang	0/4 − 20 mA, ≤ 800 Ohm	
Analogeingang	4-20 mA vom Höhensensor	
Digitalausgänge	gänge 2 offene Kollektoren, passiv 32 VDC, 0-100 Hz 100 mA, 100-10.000 Hz 20 mA, optional aktiver Impuls, Status, Fehlermeldungen	
USB-Anschluss	Mini B-USB IP67	
Konfiguration	3 Tasten	
Schnittstellen	RS485 Modbus RTU, Modbus TCP/IP Ethernet, BEACON*/AquaCue* Anschluss	
Impulslänge	Konfigurierbar bis 2000 ms	
Ausgänge	Kurzschlussfest und galvanisch getrennt	
Datenlogger	2 MB Kapazität mit 130.000 Aufzeichnungen: Datum, Höhe, Durchflussmenge, Tankvolumen	
Display	Grafische LCD-Anzeige 64x128, Hintergrundbeleuchtung, tatsächliche Durchflussgeschwindigkeit, Totalisatoren, Status-anzeige	
Gehäuse	Pulverbeschichtetes Gehäuse aus Aluminium-Druckguss, Schutzklasse IP67	
Kabeleinlass	Versorgung und Signalkabel 2 x M20	
Signalkabel	Von Messgerät M20	
Umgebungstemperatur	-20 °C bis + 60 °C	


Abmessungen (in mm)


Abmessungen

IS-4000 Durchflussmessgerät

8. PROGRAMMSTRUKTUR


	Dezimalstellen	
Volumen		
	Einheit	
		L
		hl
		m³
		ft ³
		gal
		MG
		IG
		bbl
		Aft
	Dezimalstellen	
	1	
Anwendung		1
	Tabelle	
	Exponentielle Gl.	
	Contracted Wehr	
	Suppressed Wehr	
	Cipolletti Wehr	
	V-notch Wehr 30°	
	V-notch Wehr 45°	
	V-notch Wehr 60°	
	V-notch Wehr 90°	
	Manning Recht.	
	Manningrohr	
	Pars. Rinne 1"	
	Pars. Rinne 2"	
	Pars. Rinne 3"	
	Pars. Rinne 6"	
	Pars. Rinne 9"	
	Pars. Rinne 12"	
	Pars. Rinne 18"	
	Pars. Rinne 24"	
	Pars. Rinne 36"	
	Pars. Rinne 48"	
	Pars. Rinne 60"	
	Messschachtrinne 4"	
	Messschachtrinne 6"	
	Messschachtrinne 8"	
	Messschachtrinne 10"	
	Messschachtrinne 12"	

		1	
	Gleichungsparameter		,
		Exponent	
		Koeffizient	
		Breite	
		Winkel	
		Radius	
		Wasserspiegelgefälle	
		Oberflächenrauhigkeits- koeffizient	
		Wasserhöchststand	
			Default value
			Beenden
		Wasserhöchststand	
		Messende	
			Berechnen
			Beenden
		Oberer Messbereich	
Ein- / Ausgänge		,	
	Analogausgang		,
		Bereich wählen	
			4 20 mA
			0 20 mA
			0 10 mA
		Alarmmodus	
			Aus
			23 mA
			3,5 mA
		Kompensierung	
		1	
	Digitaleingänge]
		Aus	
		Remote Reset	
		Pos Zero Reset	
		ADE	l

Digitalausgänge		
	Impulsbreite	
	Impuls/Einheit	
	Aus 1 Funktionen	
		Aus
		Vorwärtsimpulse
		Min./Max. Alarm
		Fehleralarm
		Test
		Pumpenkontrolle
		ADE
	Aus 1 Typ	
		Normal offen
		Normal geschlossen
	Aus 1 Set Min	
	Aus 1 Set Max	
	Aus 2 Funktion	
		Aus
		Vorwärtsimpulse
		Min./Max. Alarm
		Fehleralarm
		Test
		Pumpenkontrolle
	Aus 2 Typ	
	71	Normal offen
		Normal geschlossen
	Aus 2 Set Min	

Aus 2 Set Max

	Simulation		_	
		Aus		
		+100,0 %		
		+90,0 %		
		+80,0 %		
		+70,0 %		
		+60,0 %		
		+50,0 %		
		+40,0 %		
		+30,0 %		
		+20,0 %		
		+10,0 %		
		0,0 %		
	¬			
Summierzähler		1		
	Löschen			
	Beenden			
	7			
Kommunikation		1		
	Modbus		7	
		Modbus-Adresse	_	
		RS-232/422/485		1
			BaudRate	
				1200 Bd
				2400 Bd
				4800 Bd
				9600 Bd
				19200 Bd
				38400 Bd
				115200 Bd
			Parität]
			rantat	Gleich
				Ungleich
		Empfangene Pakete	1	Mark
		Gesendete Pakete	1	Wark
	Ethernet	Costructe i unete	_	
		IP-Adresse	1	
		IP-Maske	-	
		IP-Gateway	1	
		MAC-Adresse	1	
		1	ı	

Info		
	Seriennummer	
	Version	
	Firmware Version	
	Otp CRC	
	Anwendung CRC	
PIN		
	Steuerung	
	Benutzer	
	Service	
	Admin	
	Random Nummer	
	Notfall-PIN	
Login		

9. DURCHFLUSSMESSER MODBUS REGISTERTABELLE 2017-06-29, VERSION "2.00"

Addresse	Register	Rechte	Name iSonic		
0x0000	U16	Read only	PRODUCT_CODE	7: iSonic	
0x0001	8	Read only	PRODUCT_NAME	"IS-4000"	
0x0009	16	Read only	FW_NAME	"iSonic_A_STM32F107RC"	
0x0019	10	Read only	APP_VERSION	Version	
0x0023	16	Read only	COMPILATION_DATE	Date of compilation	
0x0033	16	Read only	COMPILATION_TIME	Time of compilation	
0x0043	5	Factory	IDENTIFICATION_NUMBER	Unique number	
0x0048	3	Read only	OTP_BOOT_CHECKSUM	Checksum	
0x004B	3	Read only	FLASH_OS_CHECKSUM	Checksum	
0x0081	U16	User	POWER_LINE_FREQUENCY	0: 50Hz 1: 60Hz	
0x0095	U16	Service	ANALOG_OUTPUT_RANGE	1: 4 - 20mA 2: 0 - 20mA 3: 0 - 10mA	
0x00A1	U16	Service	OUT1_LOW	Digital Output setting	
0x00A2	U16	Service	OUT1_HIGH	Digital Output setting	
0x00A3	U16	Service	OUT1_MODE	0 normally open 1 normally closed	
0x00A4	U16	Service	0: Off 1: Comparator 3: Error alarm 4: Forward 10: Test 14: Pump		
0x00AE	U16	Service	OUT2_LOW	Digital Output setting	
0x00AF	U16	Service	OUT2_HIGH Digital Output setting		
0x00B0	U16	Service	OUT2_MODE	0 normally open 1 normally closed	
0x00B1	U16	Service	O Off 1 Min/Max Alarm 3 Error alarm 4 Forward pulses 10 Test 14 Pump control		
0x0114	U16	User	LANGUAGE	0 English 1 German 2 Czech 3 Spanish 4 French 5 Russian 6 Italian 7.Turkish	
0x0115	FLOAT	Read only	MEASURE Dry calibration		
0x0119	U16	Read only	MEASURE_COUNTER Dry calibration		

				1: save configuration
				2: restore configuration
				6: save totalizers
				7: clear totalizers
				8: clear totalizers
				14: current loop calibration point A
				15: current loop calibration point B
				16: current loop calibration complete
0x0125	U16	Admin	COMMAND	22: default save
one : 25		713		23: remote reset
				24: default restore
				26: make file system
				34: press key up
				35: press key right
				36: press key save exit
				38: print screen
				41: open channel – calculate upper range
				42: open channel – use default water level
0x0126	FLOAT	Factory	CURRENTLOOP_POINTA	Dry calibration
0x0128	FLOAT	Factory	CURRENTLOOP_POINTB	Dry calibration
				Not stored in non-volatile memory
				0: 0.0%
				10: + 10.0%
				20: + 20.0%
				30: + 30.0%
				40: + 40.0%
				50: + 50.0%
				60: + 60.0%
				70: + 70.0%
				80: + 80.0%
0.0104			CINAL II ATION	90: + 90.0%
0x012A	U16	Service	SIMULATION	100: +100.0%
				65408: Off
				65436: -100.0%
				65446: - 90.0%
				65456: - 80.0%
				65466: - 70.0%
				65476: - 60.0%
				65486: - 50.0%
				65496: - 40.0% 65506: - 30.0%
				65516: - 20.0%
				65526: - 10.0%
0x012B	U32	Read only	RANDOM	Security
000120	032	nead Offig	TO WAS CIVI	0: none
0x012E	U16	Service	ALARM_MODE_OF_ANALOG_OUTPUT	3: 23 mA
J				4: 3.5 mA
0x012F	U32	Write only	REMOTE_LOGIN	Security
0x0202	FLOAT	Service	PULSE_PULSES_PER_M3	Digital Output setting
0x0204	U16	Service	PULSE_WIDTH	Digital Output setting
0x0205	U16	Service	OUT_LOW	OBSOLETE
0x0206	U16	Service	OUT_HIGH	OBSOLETE
0x0226	6	Service	DATETIME	Date & Time

				Bit0: Low Battery Bit1: Measure Timeout	
0.0222	1116	Donal I	FAULT	Bit2: Table Error Bit6: Flow Overload Warning Bit7: Disk Error	
0x0232	U16	Read only	FAULI	Bit8: Configuration Error	
				Bit9: Pulse Overload Warning Bit10: Sensor Disconnected Error	
				Bit11: Sensor Shorted Error	
0x0233	8	Read only	PORT	Debug information	
0x023D	U16	Admin	PASSWORD_CONTROL	Security	
0x023E	4	User	PASSWORD_SET_USER	Security	
0x0242	4	Service	PASSWORD_SET_SERVICE	Security	
0x0246	4	Admin	PASSWORD_SET_ADMIN	Security	
0x025B	U64	Read only	FS_TOT	Internal Disk Size [byte]	
0x025F	U64	Read only	FS_FRE	Internal Disk Free Space [byte]	
				10: 10 min 20: 20 min	
0x0263	U16	Service	DATALOGGER_PERIOD	30: 30 min	
0.0200				61: 1 hour	
				84: 24 hour	
0x0267	U16	Service	MEDIAN	Filter setting	
0x0268	U16	Service	MOVING_AVERAGE	Filter setting	
0x0279	FLOAT	Read only	ANALOG_OUTPUT_K	Dry calibration	
0x0281	FLOAT	Read only	ANALOG_OUTPUT_Q	Dry calibration	
0x02B3	FLOAT	Service	ANALOG_OUTPUT_COMPENSATION	Analog Output Compensation	
0x02E3	U32	Read only	POWER_UP_COUNTER	Power up counter	
0x0300	U16	Admin	DATAPROCESSING_TANK_OPENCHANNEL	0 Tank 1 Open Channel	
				44 Feet	
				45 Meters	
0x0301	U16	16 User	Jser UNITCODES_LENGTH	47 Inches 48 Centimeters	
				49 Millimeters	
				15 Cubic Feet Per Minute	
				16 Gallons Per Minute	
					17 Liters Per Minute
				18 Imperial Gallons Per Minute	
				19 Cubic Meter Per Hour 22 Gallons Per Second	
				23 Million Gallons Per Day	
				24 Liters Per Second	
0x0302	U16	User	UNITCODES_VOLUMETRICFLOW	26 Cubic Feet Per Second	
				28 Cubic Meters Per Second	
				30 Imperial Gallons Per Hour 130 Cubic Feet Per Hour	
				131 Cubic Meters Per Minute	
				133 Barrels Per Minute	
				136 Gallons Per Hour	
				137 Imperial Gallons Per Second	
				138 Liters Per Hour	

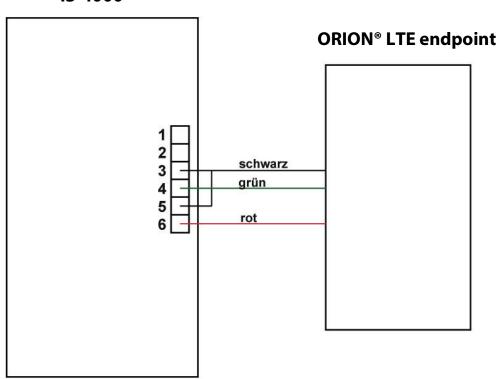
0x0303	U16	User	UNITCODES_VOLUME	40 Gallons 41 Liters 42 Imperial Gallons 43 Cubic Meters 46 Barrels 112 Cubic Feet 236 Hectoliters 240 Mega Gallons 241 Acre Feet
0x0304	U16	User	DECIMALPLACES_LENGTH	Number of decimal places of length
0x0305	U16	User	DECIMALPLACES_VOLUMETRICFLOW	Number of decimal places of volumetric flow
0x0306	U16	User	DECIMALPLACES_VOLUME	Number of decimal places of volume
0x0307	U16	Admin	OPENCHANNEL_EQUATION	
0x0307	U16	Admin	OPENCHANNEL_EQUATION	0: Open Channel Table 3: Contracted Rectangular Weir 4: Suppressed Rectangular Weir 5: Cipoletti Weir 7: Manning Equation Rectangular Channel 8: Manning Equation Pipe 9: V Notch Weir 30° 10: V Notch Weir 45° 11: V Notch Weir 60° 12: V Notch Weir 90° 13: Parshall Flume 1" 14: Parshall Flume 2" 15: Parshall Flume 6" 17: Parshall Flume 6" 17: Parshall Flume 12" 19: Parshall Flume 18" 20: Parshall Flume 18" 20: Parshall Flume 60" 22: Parshall Flume 48" 23: Parshall Flume 48" 23: Parshall Flume 60" 24: Manhole Flume 6" 26: Manhole Flume 8" 27: Manhole Flume 10" 28: Manhole Flume 12" 29: Exponential Equation
0x0308	FLOAT	Admin	SENSOR_UPPERRANGEVALUE	Sensor description [m]
0x030A	FLOAT	Admin	SENSOR_LOWERRANGEVALUE	Sensor description [m]
0x030C	FLOAT	Factory	SENSOR_DIVISIONTOCURRENT_K	Dry calibration
0x030E	FLOAT	Factory	SENSOR_DIVISIONTOCURRENT_Q	Dry calibration
0x0310	FLOAT	Read only	SENSOR_WATERLEVEL	Actual water level
0x0312	FLOAT	Read only	DATAPPOCESSING_OPENCHANNELFLOW	Actual volumetric flow
0x0314	FLOAT	Read only	DATAPROCESSING_T ANKVOLUME	Actual tank volume
0x0316	FLOAT	Read only	TOTALIZER	Totalizer
0x0318	FLOAT	Read only	SENSOR_CURRENT	Sensor actual current
0x031A	FLOAT	Service	OPENCHANNEL_UPPERRANGEVALUE	Open channel description
0x031C	FLOAT	Service	TANK_UPPERRANGEVALUE	Tank description
0x031E	U16	Service	MEASURE_WARMUPTIME	Sensor setting
0x031F	U16	Service	MEASURE_INTERVAL	Sensor setting
0x0320	16	User	DESIGNATION_CURRENT	UTF-8 Designation of sensor current
0x0330	16	User	DESIGNATION_WATERLEVEL	UTF-8 Designation of water level

0x0340	16	User	DESIGNATION_FLOW	UTF-8 Designation of flow
0x0350	16	User	DESIGNATION_VOLUME	UTF-8 Designation of volume
0x0360	32	User	DESIGNATION_TAG	UTF-8 Designation of device
0x0380	float	Service	SENSOR_WATERLEVELOFFSET	Offset
0x0388	float	Admin	SENSOR_UPPERRANGEVALUE_ACTUALUNIT	Sensor description
0x038A	float	Admin	SENSOR_LOWERRANGEVALUE_ACTUALUNIT	Sensor description
0x0390	float	Read only	SENSOR_WATERLEVEL_ACTUALUNIT	Actual water level
0x0392	float	Read only	DATAPROCESSING_OPENCHANNELFLOW_ ACTUALUNIT	Actual volumetric flow
0x0394	float	Read only	DATAPROCESSING_TANKVOLUME_ACTUALUNIT	Actual tank volume
0x0396	FLOAT	Read only	TOTALIZER_ACTUALUNIT	Totalizer
0x0398	float	Service	SENSOR_WATERLEVELOFFSET_ACTUALUNIT	Offset
0x039A	float	Service	OPENCHANNEL_UPPERRANGEVALUE_ ACTUALUNIT	Open channel description
0x039C	float	Service	TANK_U PPERRANGEVALUE ACTUALUNIT Tank description	
0x0400	FLOAT	Admin	OPENCHANNEL_EXPONENT	Open channel calibration
0x0402	FLOAT	Admin	OPENCHANNEL_COEFFICIENT	Open channel calibration
0x0404	FLOAT	Admin	OPENCHANNEL_WIDTH	Open channel calibration
0x0406	FLOAT	Admin	OPENCHANNEL_ANGLE	Open channel calibration
0x040C	FLOAT	Admin	OPENCHANNEL_RADIUS	Open channel calibration
0x040E	FLOAT	Admin	OPENCHANNEL_WATERSURFACESLOPE	Open channel calibration
0x0410	FLOAT	Admin	OPENCHANNEL_SURFACEROUGHNESS	Open channel calibration
0x0412	float	Admin	OPENCHANNEL_WATERLEVELMAXIMUM	Open channel calibration
0x0414	float	Admin	OPENCHANNEL_COEFFICIENT_ACTUALUNIT	Open channel calibration
0x0416	float	Admin	OPENCHANNEL_WIDTH_ACTUALUNIT	Open channel calibration
0x0418	float	Admin	OPENCHANNEL_RADIUS_ACTUALUNIT	Open channel calibration
0x041A	float	Admin	OPENCHANNEL_WATERLEVELMAXIMUM_ ACTUALUNIT	Open channel calibration
0x041C	float	Admin	OPENCHANNEL_SURFACEROUGHNESS_ ACTUALUNIT	Open channel calibration

9.1 iSonic Konvertierungstabelle

Address	Registers	Rights	Read	Write	Name	Note
0x0500	Float, Float	Admin	Yes	Yes	Conversion Table Point 0	Water Level [m], Volume [m³] or Flow[m³/s]
0x08FC	Float, Float	Admin	Yes	Yes	Conversion Table Point 255	

Points in conversion table have to be sorted in ascending order (higher address higher water level value). Table can be shorter. First unused point has to contain NAN value


9.2 Benutzer

1	User
2	Service
3	Admin
4	Factory

11. VERKABELUNG DES IS-4000 MIT DEM ORION® CELLULAR LTE ENDPOINT

- 1. Das rotes Kabel vom LTE mit dem Digitaleingang der IS-4000 auf Klemme 6 verbinden.
- 2. Grünes Kabel vom LTE mit dem Digitaleingang der IS-4000 auf Klemme 4 verbinden.
- 3. Schwarzes Kabel vom LTE mit dem Digitaleingang der IS-4000 auf Klemme 3 verbinden.
- 4. Jumper Digitalausgang 1 negativ der IS-4000 mit dem negativen Digitaleingangssignal verbinden.

Badger Meter Europa GmbH Subsidiary of Badger Meter, Inc.

Vertrieb durch:
H. Hermann Ehlers GmbH
An der Autobahn 45

28876 Oyten https://www.ehlersgmbh.com

Verkauf@EhlersGmbH.de

Kontrollieren. Verwalten. Optimieren.

Dynasonics, AquaCUE und SoloCUE sind eingetragene Warenzeichen der Badger Meter, Inc. Andere Warenzeichen in diesem Dokument sind Eigentum der zugehörigen Rechtspersonen. Aufgrund fortlaufender Forschung, Produktverbesserungen und -erweiterungen behält sich Badger Meter das Recht auf Änderungen von Produkt- und technischen Systemdaten ohne Ankündigung vor, sofern dem keine vertraglichen Verpflichtungen entgegenstehen. © 2023 Badger Meter, Inc. All rights reserved.