H. HERMANN EHLERS GMBH

DURCHFLUSSZÄHLER · DOSIERSTEUERUNG · VENTILE · ARMATUREN

Elektromagnetische Durchflussmesser

M5000

Bedienungsanleitung

An der Autobahn 45 · 28876 Oyten · Tel. 04207/91 21-0 · Fax 04207/91 21 41 Email Verkauf@EhlersGmbH.de · Home https://www.EhlersGmbH.com

INHALT

Sicherheitsvorkehrungen und Anweisungen
Grundlegende Sicherheitshinweise5
Auspacken und Prüfen
Verspannung, Heben und Bewegen großer Geräte
Systembeschreibung
Funktionsprinzip
Optionen für die Verstärkermontage
Montage am Messgerät
Getrennte Montage
Tauchoption
Standort des Messgeräts, Ausrichtung und Anwendungen
Getrennte Montage
Temperaturbereiche
Schutzklasse
Rohrleitungen und Flüssigkeitsstrom
Ausrichtung des Messgeräts
Vertikale Platzierung
Horizontale Platzierung
Anforderungen an gerade Rohre
Anforderungen an Reduzierstücke
Anwendungen mit chemischer Einspritzung
Teilweise gefüllte Rohre
Dichtungen und Erdung des Messgeräts
Dichtungen für die Anschlüsse des Messgeräts/der Rohrleitung
Erdung des Messgeräts
Erdung leitfähiger Rohre
Erdung nicht-leitfähiger Rohre
Rohrleitungen mit kathodischem Schutz
Elektrisch gestörte Umgebung
Verkabelung
Sicherheit der Verkabelung
Öffnen der Abdeckung
Stromversorgung
Batterie
Batterielebensdauer

	Batteriewechsel	. 17
	Pufferbatterie	. 18
Ein	bau	. 19
	Getrennte Montage	. 19
	Signalkabelspezifikation	. 21
Kor	nfiguration der Eingänge/Ausgänge (I/O)	. 22
	Schaltplan	. 22
Ber	nutzeroberfläche	. 24
	Funktionstasten	. 24
	Zugriff auf das Programmiermenü	. 24
	Anzeige	. 25
M5	000 Hauptmenü Programmieroptionen	. 26
	Navigation in den ersten Hauptbildschirmen	. 26
	Menüstruktur	. 27
Pro	grammiermenüs	. 30
	Menü "Messgerät einrichten"	. 30
	Menü "Messung"	. 31
	Menü Eingänge/Ausgänge	. 33
	Menü "Kommunikation"	. 35
	Menü "Batterie"	. 36
	Menü "Verschiedenes"	. 37
	Menü "Informationen"	. 38
	Menü "Störungen"	. 38
Sicl	herheit	. 39
	Setzen einer PIN	. 39
	Aktivieren der Sicherheitsfunktion	. 39
	Einloggen	. 40
	Abmelden	. 40
	PIN-Menü	. 40
Erw	veiterter gleitender Durchschnittsfilter für den Durchfluss	. 41
	Einführung	. 41
	Definition	. 41
	Erklärung	
	Konfiguration der durchschnittlichen Periodenlänge und des Beschleunigungsfaktors	. 43
Wa	rtung	. 45
	Reinigung des Durchflussrohrs und der Elektrode	. 45
	Ersetzen der Platine	. 45

Fehlersuche und -behebung
Fehler und Warnungen
Anschließen eines ORION RTR®-Endpunkts an das M5000-Messgerät
Verkabelung
Programmierung
Anschluss eines ORION Encoder-Endpunkts an das M5000-Messgerät
Verkabelung
Programmierung
Technische Daten
M5000-Verstärker
Abmessungen des M5000-Verstärkers in Zoll (Millimeter)
Detektor Typ VI
Flansch, ANSI-Klasse 150 ASME B16.5 52
Flansch, ANSI-Klasse 300 ASME B16.5
Flansch EN 1092-1/PN 10
Flansch EN 1092-1/PN 16
Flansch EN 1092-1/PN 25
Flansch EN 1092-1/PN 40
Fehlergrenzen
Messgerät mit OIML-Zulassung
Messgerät mit MID-Zulassung (MI-001)
Ersatzteile

SICHERHEITSVORKEHRUNGEN UND ANWEISUNGEN

Einige Verfahren in diesem Handbuch erfordern besondere Sicherheitsvorkehrungen. In solchen Fällen wird der Text mit den folgenden Symbolen hervorgehoben:

▲ GEFAHR

Weist auf eine gefährliche Situation hin, die bei Nichtvermeidung zum Tod oder zu schweren Verletzungen führt.

AWARNUNG

Weist auf eine gefährliche Situation hin, die bei Nichtvermeidung zum Tod oder zu schweren Verletzungen führen kann

AVORSICHT

Weist auf eine gefährliche Situation hin, die bei Nichtvermeidung zu leichten oder mittelschweren Verletzungen oder Sachschaden führen kann.

Grundlegende Sicherheitshinweise

Lesen Sie diese Bedienungsanleitung vor der Installation oder Verwendung des Produkts sorgfältig durch. Nur qualifiziertes Personal sollte dieses Produkt installieren und/oder reparieren. Wenn ein Fehler auftritt, wenden Sie sich an Ihren Händler.

Der magnetisch-induktive Durchflussmesser eignet sich nur für die Messung von leitfähigen Flüssigkeiten. Der Hersteller haftet nicht für Schäden, die aus unsachgemäßem oder nicht bestimmungsgemäßem Gebrauch folgen.

Die Zähler sind nach dem Stand der Technik gebaut und betriebssicher geprüft. Sie haben das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen.

Installation

- Das Gerät nicht auf eine instabile Oberfläche stellen, wo es herunterfallen könnte.
- Das Gerät niemals über einem Heizkörper oder einer Heizung aufstellen.
- Alle Kabel abseits von möglichen Gefahren verlegen.
- Vor dem Entfernen von Abdeckungen vom Netz trennen.
- Offene Kabelenden möglichst nicht Wasser/Feuchtigkeit aussetzen (z. B. in Schächten), da diese in das Kabel eindringen und elektrische Kurzschlüsse verursachen können.

Einrichtung und Betrieb

Stellen Sie nur die Bedienelemente ein, die in der Betriebsanleitung beschrieben sind. Eine unsachgemäße Einstellung anderer Bedienelemente kann zu Beschädigung, Fehlbedienung oder Datenverlust führen.

Fehlerbehebung

Trennen Sie alle Geräte von der Stromversorgung und lassen Sie sie von einem qualifizierten Servicetechniker reparieren, wenn einer der folgenden Fälle eintritt:

- Wenn ein Gerät nicht normal funktioniert, obwohl die Betriebsanweisungen befolgt wurden
- · Wenn das Gerät Regen/Wasser ausgesetzt war oder wenn Flüssigkeiten hineingelangt sind
- Wenn ein Gerät fallen gelassen oder beschädigt wurde
- · Wenn ein Gerät eine Leistungsveränderung aufweist, die auf einen Servicebedarf hinweist
- Wenn die Anschlüsse eines Kabels Regen/Wasser ausgesetzt waren, so dass Feuchtigkeit in das Kabel selbst eindringen konnte

RoHs

Unsere Produkte sind RoHs-konform.

Batterieentsorgung

Die in unseren Produkten enthaltenen Batterien müssen gemäß EU-Richtlinie 2006/66/EG entsprechend den örtlichen Gesetzen entsorgt werden.

AUSPACKEN UND PRÜFEN

Beachten Sie beim Auspacken des Geräts die folgenden Hinweise.

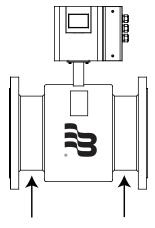
- · Wenn ein Transportbehälter Anzeichen von Beschädigungen aufweist, packen Sie das Messgerät im Beisein des Spediteurs aus.
- Alle Anweisungen zum Auspacken, Heben und Bewegen des Transportbehälters befolgen.
- Den Behälter öffnen und alle Verpackungsmaterialien entfernen. Versandbehälter und Verpackungsmaterial aufbewahren, falls das Gerät zum Kundendienst verschickt werden muss.
- · Überprüfen Sie, ob die Sendung mit der Packliste und Ihrem Bestellschein übereinstimmt.
- Überprüfen Sie das Messgerät auf Anzeichen von Transportschäden, Kratzern, losen oder beschädigten Teilen.

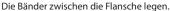
HINWEIS: Wurde das Gerät während des Transports beschädigt, liegt es in Ihrer Verantwortung, innerhalb von 48 Stunden einen Inspektionsbericht vom Spediteur anzufordern. Sie müssen dann eine Reklamation beim Spediteur einreichen und Badger Meter kontaktieren, damit das Gerät sachgemäß repariert wird oder Sie einen Ersatz erhalten.

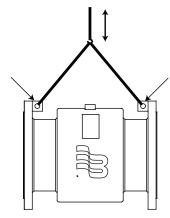
• Alle Detektoren mit Polytetrafluorethylen (PTFE)-Auskleidung werden mit einem Auskleidungsschutz an jedem Ende geliefert, um während des Versands und der Lagerung die Form des PTFE-Materials zu erhalten.

HINWEIS: Entfernen Sie den Auskleidungsschutz erst bei Beginn des Einbaus.

Lagerung: Das Messgerät im Originalbehälter an einem trockenen, geschützten Ort lagern. Die Lagertemperaturbereiche sind:


 40...160° F (-40...70° C).


Verspannung, Heben und Bewegen großer Geräte


AVORSICHT

BEIM VERSPANNEN, HEBEN UND BEWEGEN VON GROSSEN GERÄTEN DIE FOLGENDEN RICHTLINIEN BEACHTEN:

- Das Messgerät NICHT am Verstärker, Verteilerkasten oder an den Kabeln anheben oder bewegen.
- Zum Anheben und Bewegen von Messgeräten mit Durchflussrohren einer Größe von zwei bis acht Zoll (50 mm und 200 mm) einen Kran mit weichen Gurten verwenden. Die Bänder zwischen den Flanschen auf allen Seiten des Detektors um das Gehäuse legen.
- Verwenden Sie zum Anheben von Durchflussrohren von Messgeräten mit einem Durchmesser von 10 Zoll (250 mm) oder mehr die Lastösen.

Verwenden Sie bei Messgeräten ab 10 Zoll Lastösen.

Abbildung 1: Verspannen großer Geräte

 Heben Sie große Detektoren mit Hilfe von Schlingen in eine vertikale Position, solange sie noch verpackt sind. Verwenden Sie diese Methode zur Positionierung, solange die Geräte noch verpackt sind. Verwenden Sie diese Methode, um große Detektoren vertikal in Rohrleitungen zu platzieren.

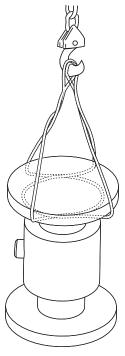
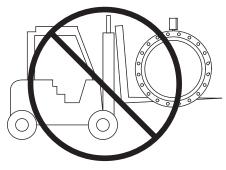
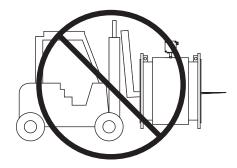




Abbildung 2: Hebemethoden mit Schlingen

- Detektoren nicht so mit dem Gabelstapler anheben, dass das Detektorgehäuse auf den Gabeln platziert wird und die Flansche über den Gabelstapler hinausragen. Das kann das Gehäuse verbeulen oder die internen Spulenbaugruppen beschädigen.
- Zum Heben des Geräts Gabelstaplergabeln, Ketten, Gurte, Schlingen, Haken oder andere Hebevorrichtungen nie in oder durch das Durchflussrohr des Detektors legen. Das kann die isolierende Auskleidung beschädigen.

Nicht durch den Detektor anheben oder verspannen.

Abbildung 3: Vorsichtshinweise zum Heben und Verspannen

SYSTEMBESCHREIBUNG

Der magnetisch-induktive Durchflussmesser M5000 von Badger Meter ist für die Flüssigkeitsmessung in den meisten Bereichen vorgesehen, darunter die Branchen Wasser und Abwasser, Nahrungsmittel und Getränke, die pharmazeutische und die chemische Industrie. Das hochgenaue Messgerät eignet sich zur Messung aller Flüssigkeiten mit einer elektrischen Leitfähigkeit von mindestens 5 μS/cm (20 μS/cm bei demineralisiertem Wasser). Die Messergebnisse hängen von Dichte, Temperatur und Druck ab.

Die Basiskomponenten von elektromagnetischen Durchflussmessern sind:

- Der **Detektor**, der das Durchflussrohr, die isolierende Auskleidung und die Messelektroden umfasst.
- Der Verstärker als das elektronische Gerät, das für die Signalverarbeitung, Durchflussberechnung, Anzeige und Ausgangssignale verantwortlich ist.

Abbildung 4: Verstärker und Detektor

Die Werkstoffe der medienberührten Teile (Auskleidung und Elektroden) sollten den Spezifikationen für die vorgesehene Betriebsart entsprechen. Es wird empfohlen, alle Kompatibilitätskriterien entsprechend der Spezifikationen zu überprüfen.

Jedes Messgerät ist werksgeprüft und -kalibriert. Jedem Messgerät liegt ein Kalibrierschein bei.

FUNKTIONSPRINZIP

Entsprechend dem Faraday'schen Induktionsgesetz wird in einem Leiter, der sich durch ein Magnetfeld bewegt, eine elektrische Spannung induziert. Bei der magnetisch-induktiven Durchflussmessung wird der bewegte Leiter durch die strömende Flüssigkeit ersetzt. Zwei gegenüberliegende Messelektroden leiten die induzierte Spannung, welche proportional zur Strömungsgeschwindigkeit ist, dem Verstärker zu. Das Durchflussvolumen wird über den Rohrdurchmesser berechnet.

OPTIONEN FÜR DIE VERSTÄRKERMONTAGE

Montage am Messgerät

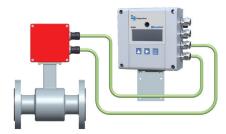
Bei der Montage am Messgerät wird der Verstärker direkt auf den Detektor montiert. Diese kompakte, in sich geschlossene Konfiguration minimiert die Installationsverkabelung.

Getrennte Montage

Bei der getrennten Montage wird der Verstärker an einem vom Flüssigkeitsstrom und Detektor entfernten Ort platziert. Dies ist dann notwendig, wenn die Temperatur der Prozessflüssigkeit oder die Umgebungstemperatur die Auslegung des Verstärkers überschreitet.

Der Detektor und der Verstärker sind durch Kabel miteinander verbunden, die durch ein Leerrohr zwischen den Verteilerkästen am Detektor und am Verstärker verlegt sind. Der Abstand zwischen dem Verteilerkasten des Detektors und dem des Verstärkers kann bis zu 100 Fuß (30 Meter) betragen. Eine getrennte Halterung wird mitgeliefert.

Tauchoption


Zur Installation des Messgeräts in einem Gewölbe bestellen Sie die Option mit externem Verstärker. Den Verstärker nicht in einem Gewölbe installieren. Es wird außerdem empfohlen, das Paket "externes Messgerät" mit Tauchoption (NEMA 6P/IP68) zu bestellen, um mögliche Probleme durch Feuchtigkeit oder vorübergehende Überflutung im Gewölbe zu vermeiden.

HINWEIS: NEMA 6P/IP68-Gehäuse sind für den Innen- und Außeneinsatz konstruiert. Sie bieten Schutz vor dem Zugang zu gefährlichen Teilen sowie etwas Schutz gegen das Eindringen von festen Fremdkörpern und Wasser (Wasser aus Schläuchen und Wassereintritt bei längerem Untertauchen in einer begrenzten Tiefe). Sie bieten einen zusätzlichen Schutz vor Korrosion und werden durch äußere Eisbildung auf dem Gehäuse nicht beschädigt.

STANDORT DES MESSGERÄTS, AUSRICHTUNG UND ANWENDUNGEN

Der M5000 bietet zwei Optionen für die Verstärkermontage: die Montage am Messgerät und die getrennte Montage.

Montage am Messgerät

Getrennte Montage

Abbildung 5: Optionen für die Verstärkermontage

Getrennte Montage

Verwenden Sie in den folgenden Fällen einen externen Verstärker:

- Detektor-Schutzklasse IP 68
- Detektor zum Einbau in ein Gewölbe (siehe Hinweis auf der vorherigen Seite)
- Flüssigkeitstemperatur über 212° F (100° C)
- Starke Vibrationen am Standort des Messgeräts

Außenstandort des externen Verstärkers

Der Verstärker kann im Freien installiert und betrieben werden. Er muss jedoch wie folgt vor Witterungseinflüssen geschützt werden:

- Die zulässige Umgebungstemperatur für das Gerät beträgt –4…140° F (–20…60° C).
- Wenn sich ein Innenraum innerhalb von 100 Fuß (30 Metern) vom Detektor befindet, sollte die Kabellänge erhöht werden (bis 100 Fuß) und der Verstärker innen montiert werden.
- Bringen Sie mindestens ein Dach oder einen Schutz über bzw. um den Verstärker an, um die LCD-Anzeige vor direkter Sonneneinstrahlung zu schützen.
- Das Signalkabel nicht in der Nähe von Stromkabeln, elektrischen Maschinen und anderen Geräten verlegen.
- · Die Signalkabel sichern. Aufgrund von Kapazitätsänderungen können Kabelbewegungen zu Fehlmessungen führen.

Temperaturbereiche

- Um eine Beschädigung des Messgeräts zu vermeiden, sind die maximalen Temperaturbereiche des Verstärkers und des Detektors strikt einzuhalten.
- In Regionen mit extrem hohen Umgebungstemperaturen empfiehlt es sich, den Detektor zu schützen.
- In Fällen, in denen die Flüssigkeitstemperatur 212° F (100° C) übersteigt, verwenden Sie den externen Verstärker.

Verstärker	Umgebungstemperatur	-4140° F (-2060° C)	
	tektor Flüssigkeitstemperatur	PTFE / PFA	-40302° F (-40150° C)
Detektor		Hartgummi	32176° F (080° C)
		Weichgummi	32176° F (080° C)

Schutzklasse

Die Schutzklasse des Geräts ist IP 67, optional IP 68. Um die Anforderungen an die Schutzklasse zu erfüllen, folgende Richtlinien befolgen:

- Die Gehäusedichtungen müssen unbeschädigt und in einwandfreiem Zustand sein.
- Alle Gehäuseschrauben müssen fest angezogen sein.
- Die Außendurchmesser der verwendeten Kabel müssen den Kabeleinführungen entsprechen (für M20 Ø 7...12 mm). Wird keine Kabeleinführung verwendet, so ist ein Blindstopfen anzubringen.
- · Kabeleinführungen festziehen.
- Führen Sie das Kabel möglichst nach unten, damit keine Feuchtigkeit in die Kabeleinführung gelangt.
- Das Messgerät wird standardmäßig mit der Schutzart IP 67 geliefert. Wird eine höhere Schutzklasse benötigt, verwenden Sie die abgesetzte Version. Auf Wunsch kann der Detektor auch in IP 68 geliefert werden.

Rohrleitungen und Flüssigkeitsstrom

Beachten Sie bei der Installation die folgenden Vorsichtsmaßnahmen:

- Das Messgerät nicht an Rohren mit extremen Rohrvibrationen installieren. Wenn Rohre vibrieren, sichern Sie die Rohrleitungen mit geeigneten Rohrstützen vor und hinter dem Messgerät. Können Vibrationen nicht gedämpft werden, den Verstärker getrennt montieren.
- Den Detektor nicht in der Nähe von Rohrleitungsventilen, Armaturen oder Hindernissen installieren, die Strömungsstörungen verursachen können.
- · Bei Detektoren mit PTFE-Auskleidung den Detektor nicht an der Saugseite von Pumpen installieren.
- Den Detektor nicht an der Auslassseite von Kolben- oder Membranpumpen installieren. Pulsierender Durchfluss kann die Leistung des Messgeräts beeinträchtigen.
- Vermeiden Sie die Installation des Detektors in der Nähe von Geräten, die elektrische Störungen erzeugen, z. B. Elektromotoren, Transformatoren, Frequenzumrichterkabel und Stromkabel.
- Prüfen Sie, ob beide Enden der Signalkabel sicher befestigt sind.
- Strom- und Signalkabel in getrennten Rohren verlegen. Das Signalkabel nicht in der Nähe von anderen Stromquellen, z. B. Stromkabeln oder elektrischen Maschinen verlegen.
- · Das Messgerät an einem für Installations- und Wartungsarbeiten gut zugänglichen Ort aufstellen.

Ausrichtung des Messgeräts

Magnetisch-induktive Durchflussmesser funktionieren präzise in jeder Rohrleitungsrichtung und messen den Volumenstrom in Vorwärtsund Rückwärtsrichtung, solange das Rohr vollständig gefüllt ist.

HINWEIS: Der Richtungspfeil "Vorwärtsfluss" ist auf der Kennzeichnung des Detektors aufgedruckt.

Vertikale Platzierung

Magnetisch-induktive Durchflussmesser funktionieren am besten, wenn sie vertikal angebracht werden, die Flüssigkeit nach oben fließt und die Elektroden des Messgeräts sich in einem geschlossenen, vollen Rohr befinden.

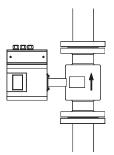


Abbildung 6: Vertikale Platzierung

Durch die vertikale Platzierung bleibt das Rohr auch bei geringem Durchfluss und niedrigem Druck vollständig gefüllt, und die Ansammlung von Feststoffen, Sedimentablagerungen und Ablagerungen an der Auskleidung und den Elektroden wird verhindert.

HINWEIS: Achten Sie genau auf die Kennzeichnung "Vorwärtsfluss" auf dem Gehäuse des Messgeräts und installieren Sie das Messgerät entsprechend. Drehen Sie bei vertikaler Installation den Verstärker so, dass die Kabelverschraubungen nach unten zeigen.

Horizontale Platzierung

Die M5000-Messgeräte verfügen über eine *Leerrohrerkennung*. Ist eine im Rohr montierte Leerohr-Elektrode fünf Sekunden lang nicht von Flüssigkeit bedeckt, so zeigt das Messgerät den Zustand Leerohrerkennung an. Das Messgerät gibt eine Fehlermeldung aus und stoppt die Durchflussmessung. Wenn die Elektrode wieder mit Flüssigkeit bedeckt ist, verschwindet die Fehlermeldung und das Messgerät setzt die Messung fort.

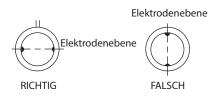
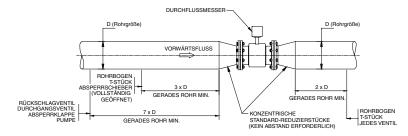



Abbildung 7: Horizontale Platzierung

Bei der Installation des Messgeräts an einem horizontalen Rohr muss der Detektor so am Rohr befestigt werden, dass die Achse der Durchflussmesselektrode in einer horizontalen Ebene liegt (drei Uhr und neun Uhr). Diese Platzierung vermeidet die Ansammlung von Feststoffen, Sedimentablagerungen und Ablagerungen an den Elektroden.

Anforderungen an gerade Rohre

Für eine optimale Genauigkeit und Leistung des Messgeräts ist eine ausreichende Anzahl von geraden Rohrleitungen am Einlass und Auslass des Detektors erforderlich. Auf der Einlassseite (stromaufwärts) ist ein gerades Rohr mit einem Äquivalent von 3...7 DN erforderlich, um ein stabiles Strömungsprofil zu erhalten. An der Auslassseite (stromabwärts) sind 2 DN erforderlich.

MINDESTANFORDERUNGEN AN DIE VERROHRUNG
Abbildung 8: Anforderungen an gerade Rohre

Anforderungen an Reduzierstücke

Mit Reduzierstücken kann ein kleineres Messgerät

in größere Rohrleitungen eingebaut werden. Diese Konfiguration kann die Genauigkeit bei niedrigem Durchfluss erhöhen.

Für konzentrische Standard-Reduzierstücke gelten keine besonderen Anforderungen.

Kundenspezifisch gefertigte Reduzierstücke müssen einen maximalen Neigungswinkel von 8 Grad haben, um Strömungsstörungen und übermäßigen Druckverlust zu minimieren. Ist dies nicht möglich, sind die kundenspezifischen Reduzierstücke wie Armaturen zu installieren und die erforderliche Menge an geradem Rohr ist zu verlegen.

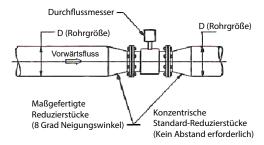
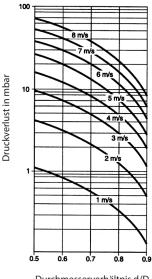



Abbildung 9: Anforderungen an Reduzierstücke

Durchmesserverhältnis d/D

Abbildung 10: Druckverlustdiagramm

Anwendungen mit chemischer Einspritzung

Bei Wasserleitungsanwendungen mit chemischer Einspritzstelle muss das Messgerät stromaufwärts vor der Einspritzstelle installiert werden. Dadurch werden Leistungsprobleme des Messgeräts vermieden.

Abbildung 11: Chemische Einspritzstelle hinter dem Messgerät

Muss ein Messgerät stromabwärts von einem Anschluss für die chemische Einspritzung installiert werden, sollte der Abstand zwischen dem Flansch und der Einspritzstelle 50 bis 100 Fuß (15 bis 30 Meter) betragen. Der Abstand muss groß genug sein, dass das Wasser oder die chemische Lösung das Messgerät als vollständige, homogene Mischung erreicht.

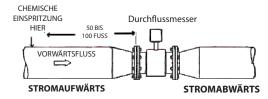
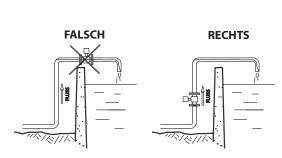
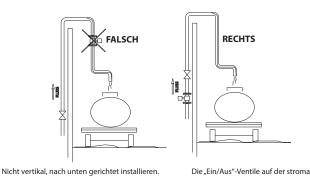


Abbildung 12: Chemische Einspritzstelle stromaufwärts des Messgeräts


Liegt der Einspritzpunkt zu nahe, misst das Messgerät die beiden unterschiedlichen Leitfähigkeiten der einzelnen Flüssigkeiten. Dies kann zu ungenauen Messungen führen. Auch die Einspritzmethode, d. h. einzelne Impulse der ein kontinuierlicher Strom von Tropfen, Flüssigkeit oder Gas, kann sich auf die nachgelagerten Messwerte des Messgeräts auswirken.

Teilweise gefüllte Rohre


An manchen Orten kann die Prozessleitung vorübergehend nur teilweise gefüllt sein. Beispiele hierfür sind: fehlender Gegendruck, unzureichender Leitungsdruck und Schwerkraftanwendungen.

Um diese Situationen zu vermeiden:

- Das Messgerät nicht an der höchsten Stelle der Rohrleitung installieren.
- Das Messgerät nicht in einem vertikalen Rohrabschnitt mit Abwärtsfluss installieren.
- Die EIN/AUS-Ventile immer auf der stromabwärts gelegenen Seite des Messgeräts positionieren.
- · Leerrohr für Anwendungen oder Installationen anschalten, bei denen das Rohr manchmal leer ist.
- Den Detektor nicht auf der Saugseite von Pumpen installieren. Dies kann die Auskleidung beschädigen (insbesondere PTFE-Auskleidungen).
- Den Detektor nicht an vibrierenden Rohren installieren. Bei stark vibrierenden Rohren die abgesetzte Version verwenden.

nt vertikal, nach unten gerichtet installieren.

Die "Ein/Aus"-Ventile auf der stromabwärts gelegenen Seite positionieren.

Abbildung 14: Ventile auf der stromabwärts gelegenen Seite positionieren

Um teilgefüllte Rohrleitungen bei horizontalen, Schwerkraft- oder Niederdruckanwendungen zu minimieren, die Rohre so anordnen, dass der Detektor jederzeit mit Flüssigkeit gefüllt ist.

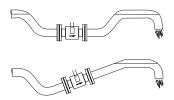


Abbildung 15: Rohr so positioniert, dass das Wasser im Detektor bleibt

DICHTUNGEN UND ERDUNG DES MESSGERÄTS

Bei der Wahl des Standorts, der Ausrichtung und der Anwendung des Messgeräts die Anforderungen an Dichtungen und Erdung berücksichtigen. Alle Geräte erden, um die Gefahr eines Stromschlags zu vermeiden.

AVORSICHT

WIRD EIN GERÄT NICHT ORDNUNGSGEMÄSS GEERDET, SO KANN DIES ZU SCHÄDEN AN DIESEM GERÄT ODER DEN DARIN GESPEICHERTEN DATEN KOMMEN.

Dichtungen für die Anschlüsse des Messgeräts/der Rohrleitung

Installieren Sie Dichtungen (nicht mitgeliefert) zwischen der isolierenden Auskleidung des Detektors und dem Rohrleitungsflansch, um eine ordnungsgemäße und sichere hydraulische Abdichtung zu gewährleisten. Dichtungen verwenden, die mit der Flüssigkeit kompatibel sind. Jede Dichtung auf dem Flansch zentrieren, um Strömungshindernisse oder Turbulenzen in der Leitung zu vermeiden.

Bei der Montage kein Graphit oder elektrisch leitende Dichtmassen zum Fixieren der Dichtungen verwenden. Dies kann die Genauigkeit des Messsignals beeinträchtigen.

Bei Verwendung eines Erdungsrings (von Badger Meter empfohlen) für die Verbindung zwischen Detektor und Rohrleitung, positionieren Sie den Ring zwischen zwei Dichtungen. (Siehe "Erdung nicht-leitfähiger Rohre" auf Seite 15.)

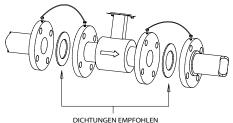


Abbildung 16: Dichtungen für die Anschlüsse des Messgeräts/der Rohrleitung

Erdung des Messgeräts

Das Material der Prozessleitung kann entweder elektrisch leitend (Metall) oder nicht elektrisch leitend (hergestellt aus oder ausgekleidet mit PVC, Glasfaser oder Beton) sein.

WICHTIG

Die Eingangsmasse (Referenzspannung 0) des Verstärkers des magnetisch-induktiven Durchflussmessers muss unbedingt mit dem flüssigen Medium und einer guten, festen Bezugsmasse verbunden sein.

Potenzialausgleich

Für eine genaue Messung müssen der Detektor und die Flüssigkeit auf demselben elektrischen Potenzial liegen.

Bei Flansch- oder Zwischenflanschausführungen mit zusätzlicher Erdungselektrode erfolgt die Erdung über die angeschlossene Rohrleitung.

- Wenn ein Messgerätetyp mit einem Flanschkabel (min. 4 mm²) zwischen der Erdungsschraube am Flansch des Messgeräts und dem Gegenflansch zusätzlich zu den Befestigungsschrauben verwendet werden soll, ist zu überprüfen, dass eine vollständige elektrische Verbindung besteht.
- · Farbe oder Korrosion auf dem Gegenflansch können sich negativ auf den elektrischen Anschluss auswirken.

Erdung leitfähiger Rohre

Um eine adäquate Erdung zu erreichen, MUSS das Gehäuse des Messgeräts elektrisch mit dem flüssigen Medium verbunden sein. Die Flansche des magnetisch-induktiven Durchflussmessers sind zu diesem Zweck mit Erdungsbolzen versehen.

Wenn das Rohrmaterial elektrisch leitend ist, werden einfach Erdungsbänder zwischen diesen Erdungsbolzen und den Gegenflanschen angebracht.

Die Erdungsbänder müssen aus Kupferdraht mit einer Mindestgröße von 12 AWG bestehen. Sie müssen auf beiden Seiten (Eingang und Ausgang) des Detektors an eine örtliche Erde angeschlossen werden.

Um eine gute elektrische Verbindung an den Gegenflanschen zu gewährleisten, empfiehlt Badger Meter, die Flansche zu bohren und mit einem Gewinde zu versehen und eine Erdungsschraube (nicht mitgeliefert) zu installieren.

Erdung nicht-leitfähiger Rohre

WICHTIG

Wenn die Prozessleitung nicht elektrisch leitend ist (PVC, Glasfaser, mit Zement ausgekleidete Rohre oder ein anderes nicht-leitfähiges Material) und das Messgerät ursprünglich nicht mit einer optionalen Erdungselektrode bestellt wurde, muss ein Paar Erdungsringe zwischen den Gegenflanschen an beiden Enden des Messgeräts installiert werden. Siehe Abbildung unten.

In diesem Fall die Erdungsbänder mit den beiden Erdungsringen und mit guter, solider Erdung verbinden. Erdungsringe aus Edelstahl sind erhältlich. Ist die Flüssigkeit zu aggressiv für Edelstahl, dann ein Messgerät mit optionaler Erdungselektrode aus einem mit der Flüssigkeit kompatiblen Material bestellen.

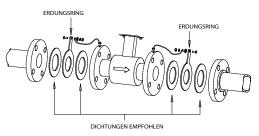


Abbildung 17: Erdung nicht-leitfähiger Rohre

Rohrleitungen mit kathodischem Schutz

Bei Rohrleitungen mit kathodischem Schutz ist das Messgerät potentialfrei zu installieren. Es darf keine elektrische Verbindung vom Messgerät zum Rohrleitungssystem bestehen, und die Stromversorgung muss über einen Trenntransformator erfolgen.

AVORSICHT

ERDUNGSELEKTRODEN VERWENDEN. VON DER ROHRLEITUNG ISOLIERTE ERDUNGSRINGE INSTALLIEREN.

NATIONALE VORSCHRIFTEN ZUR POTENZIALFREIEN MONTAGE SIND ZU BEACHTEN.

Elektrisch gestörte Umgebung

Befindet sich das Rohrmaterial in einer elektrisch gestörten Umgebung oder werden nicht-geerdete, metallische Rohrleitungen verwendet, wird eine Erdung wie im unten gezeigten Bild empfohlen, um eine unbeeinflusste Messung sicherzustellen.

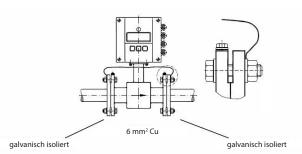
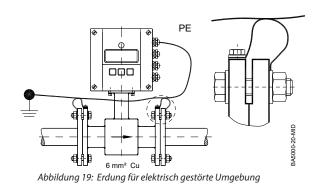



Abbildung 18: Potentialfreie Montage

VERKABELUNG

Sicherheit der Verkabelung

A WARNUNG

- Das Gerät von der Stromversorgung trennen, bevor ein Anschluss oder eine Wartung vorgenommen wird.
- Signalleitungen dürfen nicht mit Stromleitungen gebündelt oder verlegt werden.
- Für die gesamte Ausgangsverdrahtung verdrillte, abgeschirmte Kabel verwenden.
- Bei 4 × M20 Kabeleinführungen dürfen nur flexible Stromkabel verwendet werden.
- Alle anwendbaren, lokalen elektrischen Vorschriften müssen beachtet werden.

Öffnen der Abdeckung

Das Design des M5000-Verstärkers ermöglicht es, die Abdeckung zu öffnen, ohne sie vollständig abzunehmen.

Gehen Sie wie folgt vor:

- 1. Die beiden oberen Schrauben des Verstärkers mit einem Schlitzschraubendreher vollständig herausdrehen.
- Die beiden unteren Schrauben lösen, bis der runde Kopf jeder Schraube über der Oberseite der Abdeckung heraussteht.
- 3. Die Abdeckung nach unten in die geöffnete Position ziehen.

Abbildung 21: Abdeckung öffnen

STROMVERSORGUNG

Der M5000 kann betrieben werden mit:

- nur Batterie (2 D-Zellen oder 4 D-Zellen)
- 100...240V AC (mit Pufferbatterie)
- 9...36V DC (mit Pufferbatterie)

Batterie

Verwenden Sie einen Batteriesatz mit zwei D-Zellen für die Größen 1/2...6 Zoll (DN 15...150) oder einen doppelten Batteriesatz mit zwei D-Zellen für die Größen 8...24 Zoll (DN 200...600). Optionen für Pufferbatterien finden Sie unter "Pufferbatterie" auf Seite 18.

Das Messgerät wird mit abgezogener Batterie geliefert. Sie muss vor Verwendung des Messgeräts eingesteckt werden. Die Anschlussbuchse ist mit dem Symbol "BAT" auf der Platine gekennzeichnet.

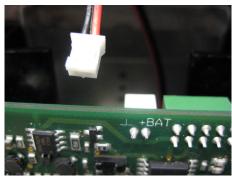


Abbildung 22: Batterieanschluss

Abbildung 23: Gesteckte Batterie

Batterielebensdauer

HINWEIS: Die Lebensdauer der Batterie hängt stark von der Umgebungstemperatur, der Abtastrate und der Anzahl der verwendeten Ausgänge ab.

Standard-Batteriesatz		
Abtastrate Typische Lebensdau		
1 s	8 Monate	
4 s	2,7 Jahre	
8 s	5,3 Jahre	
15 s	10 Jahre	

Diese Berechnungen beziehen sich auf einen Standard-Batteriesatz mit zwei D-Batterien bei ausgeschalteter Kommunikation, ausgeschalteten Ausgängen und einer Temperatur von 25°C (77°F). Siehe "Batteriestandsanzeigen" auf Seite 26.

Batteriewechsel

- 1. Gehen Sie zu *Main Menu (Hauptmenü) > Misc (Verschiedenes) > Battery (Batterie) > Change (Ändern)* und wählen Sie die Kapazität des zu installierenden Batteriesatzes (siehe Etikett auf dem Batteriesatz: 19 Ah, 38 Ah oder 70 Ah). Zum Beenden **E** drücken. Das Display reagiert nicht (keine Reaktion beim Drücken jeder beliebigen Taste).
- 2. Abdeckung öffnen.
- 3. Alle Stecker (Detektor und Ausgänge) entfernen.
- 4. Alle 4 Schrauben des Mainboards herausdrehen, die Platine entfernen und die alte Batterie abklemmen.
- 5. Die alte Batterie entfernen und ca. 2 Minuten warten, bevor Sie sie durch eine neue ersetzen (die LCD-Anzeige sollte ausgeschaltet sein).
- 6. Den Batterieanschluss in die Rückseite der Hauptplatine einstecken und die Platine wieder einbauen.
- 7. Alle Stecker austauschen.
- 8. Den Deckel fest schließen.
- 9. Prüfen Sie Uhrzeit und Datum (Main Menu (Hauptmenü) > Misc (Verschiedenes) > Time (Uhrzeit) und Main Menu (Hauptmenü) > Misc (Verschiedenes) > Date DMY (Datum Tag, Monat, Jahr)).
- 10. Die Batteriekapazität prüfen (*Main Menu (Hauptmenü) > Misc (Verschiedenes) > Battery AH (Batterie AH)*). Der erste Wert ist die genutzte Kapazität, diese sollte 0,0 betragen. Der zweite Wert ist die Kapazität des Batteriesatzes. *Batterie AH* ist ein schreibgeschützter Parameter.

HINWEIS: Zähler und Konfiguration werden vom Batteriewechsel nicht beeinflusst.

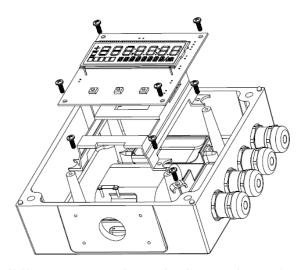
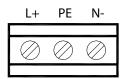
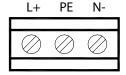


Abbildung 24: Komponenten des Verstärkergehäuses – Explosionszeichnung


Pufferbatterie

Mit der optionalen Pufferbatterie kann das Messgerät im Falle eines Stromausfalls über die Pufferbatterie betrieben werden. Das Messgerät wird mit einer nicht angeschlossenen Pufferbatterie geliefert. Achten Sie darauf, dass die Stromkabel für eine ausreichend hohe Stromstärke ausgelegt sind. Im Zweifelsfall wenden Sie sich bitte an Ihren Händler.



DAS MESSGERÄT NICHT UNTER SPANNUNG INSTALLIEREN

1. Die Stromversorgung entsprechend der Klemmenmarkierung anschließen.

90...264V AC (50/60Hz)

9...36V DC

HINWEIS: Die Schmelzsicherung ist auf die Elektronikplatine gelötet (1,6 A träge).

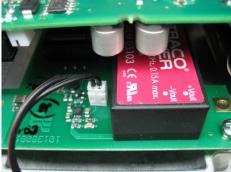


Abbildung 26: Ort der Pufferbatterie

2. Verbinden Sie die Batterie mit der Anschlussbuchse auf der Netzteilplatine. Siehe Abbildung 26.

HINWEIS: Die Platine ist standardmäßig mit einer Modbus RTU RS485-Schnittstelle ausgestattet.

BATTERIEAKTIVIERUNG BEI IP68-VERSION

Abbildung 27: Batterieaktivierung IP68-Version

- 1. Das Gerät ist mit einer Transportsicherung ausgestattet und trennt die interne Stromversorgung (Lithiumbatterie) von der Elektronik.
- 2. Wenn das Gerät an seinem Bestimmungsort angekommen ist, aktivieren Sie es mit dem mitgelieferten Magneten wie in der *Abbildung* 27.
- 3. Dazu müssen Sie den Magneten an den blau markierten Punkt an der Seite des Transmittergehäuses halten. Nun ist das Gerät eingeschaltet und das Display aktiviert.

HINWEIS: Einmal eingeschaltet, kann das Gerät nicht wieder ausgeschaltet werden.

EINBAU

Bei Detektoren mit PTFE-Auskleidung darf die Schutzkappe auf dem Flansch erst kurz vor dem Einbau entfernt werden.

Getrennte Montage

Halterung am Verstärker montieren

- 1. Die Befestigungslöcher für die Halterung an den Befestigungslöchern für den Verstärker ausrichten.
- 2. Die Halterung mit den mitgelieferten Schrauben am Verstärker anbringen. Die Schrauben mit einem Drehmoment von 80 Zoll-Pfund anziehen.

Verkabelungskonfiguration

Anschluss am Verstärker

- 1. Die Abdeckung des Verstärkers öffnen.
- 2. Beide Kabel wie in *Abbildung 28* gezeigt durch zwei verschiedene Kabelverschraubungen führen.

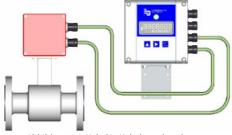


Abbildung 28: Kabel in Kabelverschraubungen

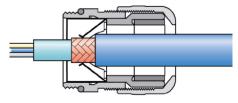
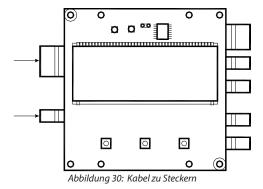



Abbildung 29: Kabeleinführung

- 4. Die Kabel mit den entsprechenden Steckern auf der linken Seite der Platine wie in *Abbildung 30* gezeigt verbinden.
- 5. Den Deckel fest schließen.

Anschluss am Detektor

- 1. Die Befestigungsschrauben der Anschlussabdeckung lösen und die Abdeckung abnehmen.
- 2. Beide Kabel durch zwei verschiedene Kabelverschraubungen führen.
- 3. Die Kabeleinführung sollte wie in Abbildung 31 gezeigt erfolgen.

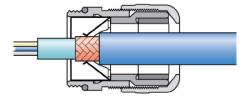
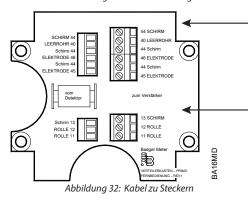
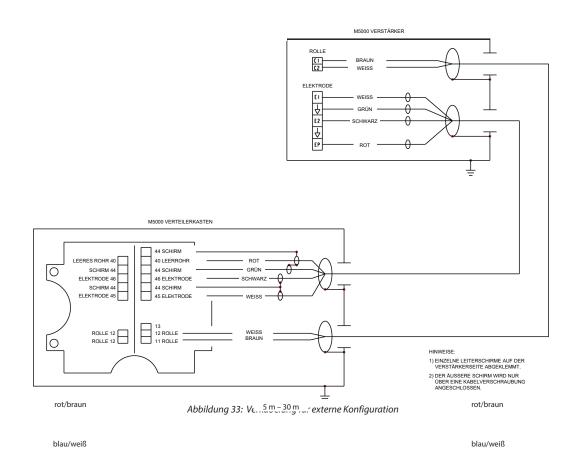



Abbildung 31: Kabeleinführung

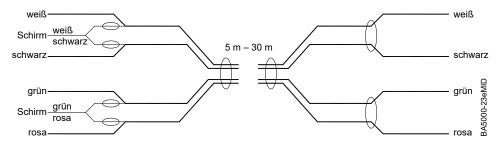
- 4. Die Kabel mit den entsprechenden Steckern auf der linken Seite der Platine wie in *Abbildung 32* gezeigt verbinden.
- 5. Den Deckel des Verteilerkastens wieder fest schließen.

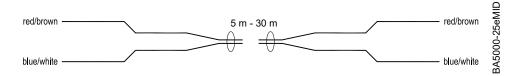


Verkabelung für externe Konfiguration

Die externen M5000-Verstärkermodelle können mit Standardkabeln von 15, 30, 50 und 100 Fuß (5, 10, 15 und 30 m) bestellt werden.

Verteilerkasten			
Klemme		Beschreibung	Drahtfarbe
11	C1	Spule C1	Braun
12	C2	Spule C2	Weiß
13		k. A.	nicht verwendet
40	EP	Leerrohrerkennung	Rot
44*	Ť	Schirmelektrode	_
44*	Ť	Schirmelektrode	Grün
45	E1	Elektrode E1	Weiß
46	E2	Elektrode E2	Schwarz


^{*}Anschlüsse der Nummer 44 liegen auf demselben Potenzial.


Signalkabelspezifikation

- Nur die von Badger Meter mitgelieferten Signalkabel oder entsprechende Kabel mit nachfolgender Spezifikation verwenden.
- Die maximale Signalkabellänge zwischen Detektor und Verstärker beachten (Abstand so gering wie möglich halten).

Elektrodenkabel			
Distanz Typ Kapazität			
Max. 30 m RGB DY 5 × Kx 0,4/1,8 60 nF/km			
Temperaturbereich –10 bis +80° C			

Spulenkabel				
Distanz Typ Widerstand				
Max. 30 m $1 \times (2 \times 0.34 \text{ mm}^2)$ < 115 Ω/km				
PVC-Kabel Typ Li2YCY (TP)				
Temperaturbereich –5 bis +70° C				

KONFIGURATION DER EINGÄNGE/AUSGÄNGE (I/O)

In diesem Abschnitt wird die Verkabelung der folgenden M5000-Ausgänge beschrieben:

- · Digitale Ausgänge
- Kommunikation

Nach dem Verkabeln des Sensors und Verstärkers alle Ausgänge mit dem M5000-Verstärker verkabeln.

Alle Sicherheitsvorkehrungen und lokalen Vorschriften befolgen, um Stromschläge und Schäden an den elektronischen Bauteilen zu vermeiden.

Schaltplan

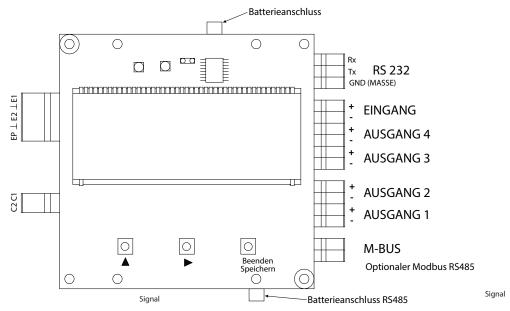


Abbildung 34: Konfiguration der Eingänge/Ausgänge

Ein-/Ausgang	Beschreibung	Terminal
Ausgang 1	passiv max. 30V DC, 20 mA max. Frequenz 100 Hz	OUT1 (+) und (-)
Ausgang 2	passiv max. 30V DC, 20 mA max. Frequenz 100 Hz	OUT2 (+) und (-)
Ausgang 3	passiv max. 30V DC, 20 mA max. Frequenz 100 Hz	OUT3 (+) und (-)
Ausgang 4	passiv max. 30V DC, 20 mA max. Frequenz 100 Hz Kann mit digitalem Eingang als ADE-Schnittstelle verwendet werden.	OUT4 (+) und (-)
RS232	Modbus RTU	RxD, TxD, GND
IN	Digitaleingang 335V DC	IN (+) und (-)
M-Bus ¹ M-Bus-Schnittstelle		keine Polarität
Optionaler Modbus RS485 ² Modbus-Schnittstelle externe Stromversorgung 532V DC optional intern mit Batterie		GND, B-, A+, 12V

HINWEIS: ¹ Ausführliche Informationen zur M-Bus- Schnittstelle finden Sie auf *www.badgermeter.com* im Bereich Mess- und Regeltechnik für die Industrie > Produktlinien/Markennamen > ModMAG > M5000 > Produktdokumentation.

HINWEIS: ² Das M5000-Messgerät unterstützt auch Kommunikation mit Modbus RTU RS485. Kommunikationsoptionen Modbus-RTU müssen bei der Bestellung ausgewählt werden oder können als Serviceteil bestellt werden. Siehe "M5000 Modbus Communication Protocol Memory Map Application Data Sheet", verfügbar unter www.badgermeter.com im Bereich Mess- und Regeltechnik für die Industrie > Produktlinien/Markennamen > ModMAG > M5000 > Produktdokumentation.

Position der Jumper

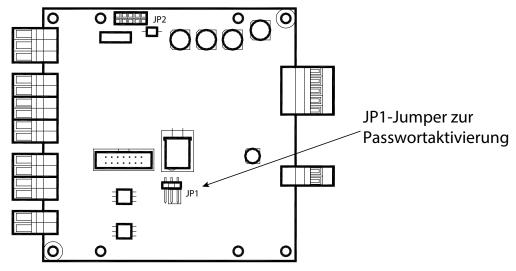


Abbildung 35: Position von JP1

Schaltpläne für digitale Ausgänge

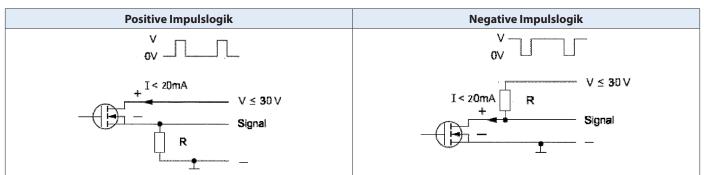


Abbildung 36: Schaltplan für Digitalausgänge

Auswahl des Digitalausgangs

Ausgang 1 Ausgang 2		Ausgang 3	Ausgang 4
Impulsausgang vorwärts	Impulsausgang rückwärts Durchflussrichtung (vorwärts oder rückwärts)		
Durchfluss-Sollwert (0100 % des Messbereichs, Auflösung 1 %)		Durchfluss-Sollwert (0100 % des Messbereichs, Auflösung 1 %)	
Leerrohralarm		Leerrohralarm	
Fehlermeldung		Fehlermeldung	ADE
Aus			
Test			
Kann mit AMR verwendet werden, wenn die Impulsbreite auf 50 Millisekunden eingestellt ist.		_	

Die Ausgänge sind für Impulse per Einheit (PPU) und Impulsbreite (PW) konfigurierbar. Die Impulsbreite ist von 5...500 Millisekunden konfigurierbar bei einer Grenzfrequenz von 100 Hz. PPU wird mit einer automatisch gewählten Auflösung angezeigt.

Die Funktion min./max. Durchflussalarm ist für maximale und minimale Sollwerte als Prozentsatz des Skalenendwerts konfigurierbar. Konfigurierbare Werte sind von 0...100% in 1%-Schritten einstellbar.

BENUTZEROBERFLÄCHE

Der M5000-Verstärker ist werkseitig vorprogrammiert. Es ist keine zusätzliche Programmierung erforderlich, jedoch kann das Messgerät für Sonderfunktionen auf spezifische Anforderungen programmiert werden.

Funktionstasten

Die gesamte Programmierung des M5000 wird über die drei Funktionstasten an der Vorderseite des Verstärkers vorgenommen. Die Navigation auf dem Bildschirm und die Auswahl von Ziffern und Parametern erfolgt durch eine Kombination dieser drei Tasten.

Mit der **Pfeiltaste nach oben** können Sie durch neun Menübildschirme blättern. Mit dieser Taste werden auch Ziffern weitergeschaltet, um Werte wie Frequenz, Periode und EP-Level zu ändern und um Ein-Aus-Bedingungen und Flussrichtungen umzuschalten.

Mit der **rechten Pfeiltaste** können Sie die Ziffern von links nach rechts auswählen und entweder die obere oder die untere Zeile der Anzeige auswählen (die untere Zeile ist aktiv, wenn sie blinkt).

Mit der **EXIT SAVE**-Taste werden geänderte Werte und Bedingungen gespeichert, es wird zwischen der oberen und unteren Displayzeile umgeschaltet und zu einem vorherigen Menü zurückgekehrt.

Zugriff auf das Programmiermenü

Um in den Messmodus zur Parametrierung zu gelangen, drücken Sie solange die **Pfeiltaste nach oben** bis in der zweiten Zeile "Menue" angezeigt wird.

Programmierung auswählen

Drücken Sie nun die rechte Pfeiltaste, um diesen Menüpunkt auszuwählen.

Tasten bei der IP68-Version

Die Tasten der IP68-Version sind nicht verfügbar. Das Messgerät kann nur über die Schnittstelle (8-poliger Stecker) mit Hilfe des Gerätemanagers konfiguriert werden.

 $\label{eq:def:Die Anzeige schaltet automatisch zwischen Durchflussrate und T2+um.$

Anzeige

In der oberen Zeile werden sieben Ziffern für bestimmte Werte auf jedem Bildschirm angezeigt. In der unteren Zeile werden Symbole für Messgeräte- und Registerzustände sowie aktuelle Bildschirmbeschreibungen angezeigt.

Symbole

Batteriezustand

Kommunikationsschnittstelle aktiviert (RS232, IrDA, M-Bus)

Messgerät ist entsperrt

Fehlermeldung

Leerrohrerkennung

Pufferbatterie (externe Stromversorgung)

Batteriestandsanzeigen

Das Batteriesymbol zeigt drei Kapazitätsstatus an:

OK

Batteriewechsel empfohlen

Keine Messung

M5000 HAUPTMENÜ PROGRAMMIEROPTIONEN

Die folgenden M5000-Programmieroptionen sind über das *Hauptmenü* verfügbar:

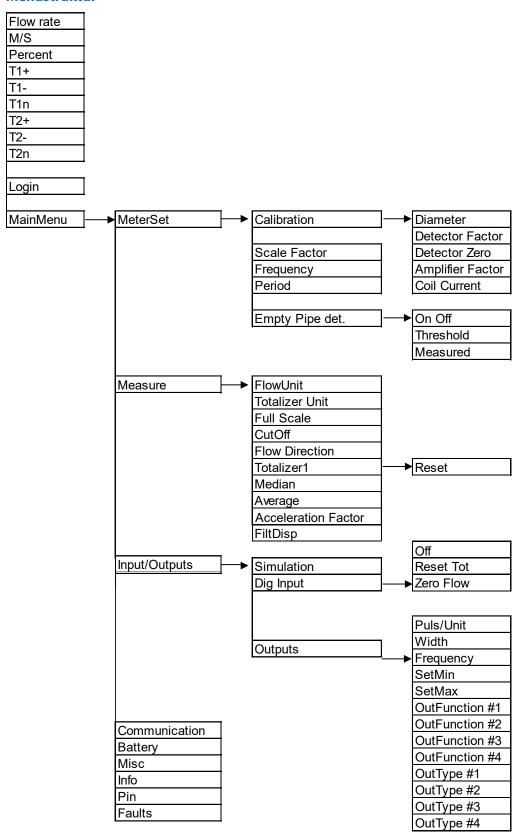
- Messgerät einrichten
- Messen
- Ein- und Ausgänge
- Kommunikation
- Batterie
- Verschiedenes
- Informationen
- Pin
- Störungen

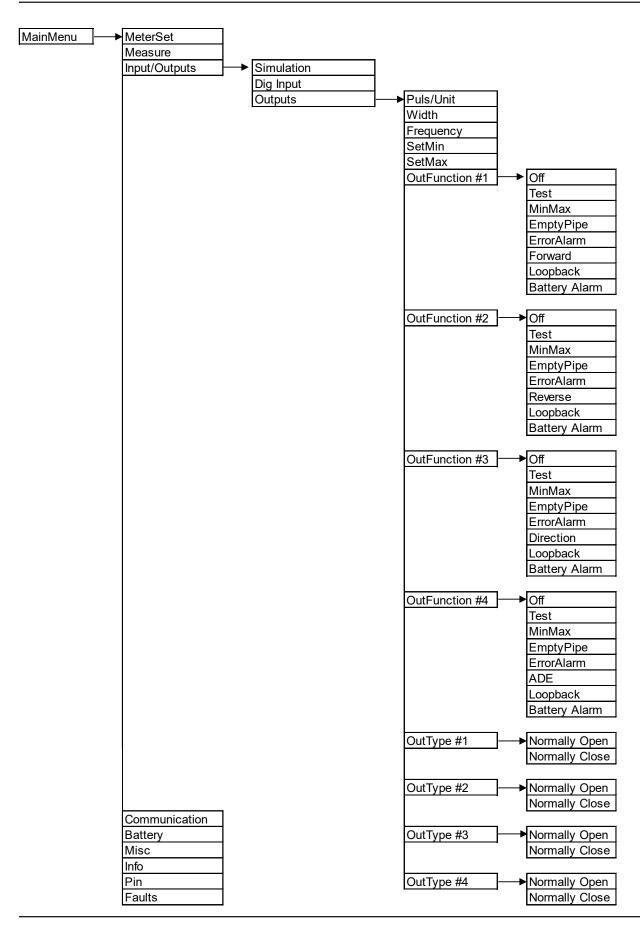
Die jeweilige Sicherheitsstufe für jede Menüoption wird wie folgt angegeben:

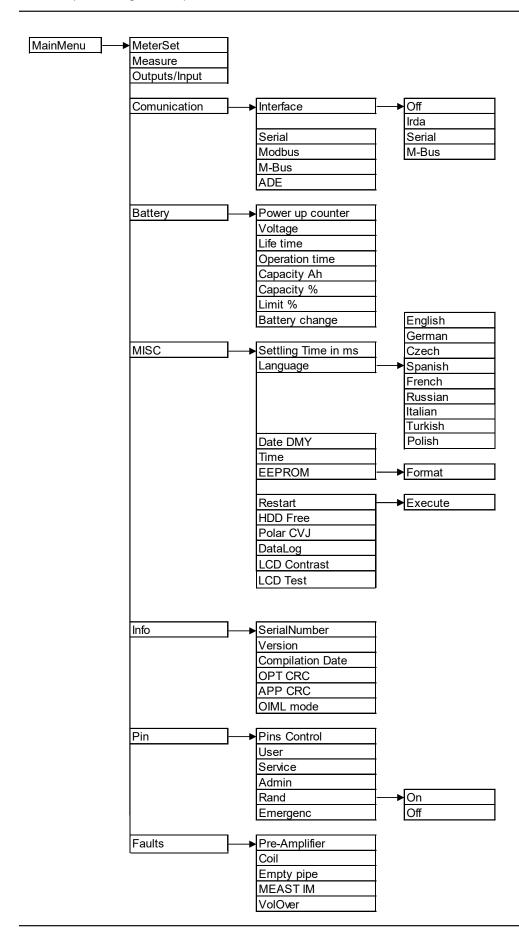
A Administrator

Sorvice

U Benutzer


Die durch das Batteriesymbol angezeigten Parameter beeinflussen die Batterieleistung.


Navigation in den ersten Hauptbildschirmen


In der Hauptanzeige die Taste **EXIT/SAVE** drücken, um zum Bildschirm *Durchflussmenge* zurückzukehren, oder die Pfeiltaste **UP** drücken, um durch die folgenden Optionen zu blättern:

Option	Beschreibung
Bildschirm "Fluss"	Anzeige der Durchflussmenge in den ausgewählten Einheiten (z. B. Gallonen oder Kubikfuß)
m/s	Anzeige des Durchflusses in Meter/Sekunde (werkseitig programmiert)
Prozent	Prozentsatz des Skalenendwerts
T1+	Gesamter Vorwärtsfluss (im bidirektionalen Betrieb)
T1-	Gesamter Rückwärtsfluss (im bidirektionalen Betrieb)
T1N	Nettofluss gesamt (im bidirektionalen Betrieb)
T2+	Gesamter Vorwärtsfluss (im bidirektionalen Betrieb, nicht rücksetzbar)
T2-	Gesamter Rückwärtsfluss (im bidirektionalen Betrieb, nicht rücksetzbar)
T2N	Nettofluss gesamt (im bidirektionalen Betrieb, nicht rücksetzbar)
Anmelden	Anmeldung bei aktiver Sicherheit
Hauptmenü	Zugang zum Hauptmenü

Menüstruktur

PROGRAMMIERMENÜS

Menü "Messgerät einrichten"

	ı	Messgerät einrichten
Calibration (Kalibrierung)	Diameter (Durchmesser) [Diameter]	Werkseitig eingestellt. Falls der Verstärker ausgetauscht wird, ist zu überprüfen, ob der Rohrdurchmesser mit der installierten Rohrgröße übereinstimmt.
	Detector Factor (Detektorfaktor) [Det Fact]	Werkseitig eingestellt. Kompensiert den Genauigkeitsfehler, der durch den installierten Detektor entsteht. Falls der Verstärker ausgetauscht wird, muss dieser Parameter mit dem ursprünglichen Detektorfaktor neu programmiert werden.
	Detector Zero (Nullpunkt des Detektors) [Det Zero]	Werkseitig eingestellt. Kompensiert den Genauigkeitsfehler, der durch den installierten Detektor entsteht. Falls der Verstärker ausgetauscht wird, muss dieser Parameter mit dem ursprünglichen Nullpunkt des Detektors neu programmiert werden.
	Amplifier Factor (Verstärkungsfaktor) [Amp Fact] schreibgeschützt	Werkseitig eingestellt und schreibgeschützt. Kompensiert den Genauigkeitsfehler, der durch den eingebauten Verstärker entsteht.
	Coil Current (Spulenstrom) [Coil Cur] schreibgeschützt	Werkseitig eingestellt und schreibgeschützt. Kompensiert den Genauigkeitsfehler, der durch den eingebauten Verstärker entsteht.
Scale Factor (Skalierungsfaktor) [Scale]	Durch Ändern des Skalierungsfaktors kann die Genauigkeit des Messgeräts angepasst werden, ohne die werkseitig eingestellten Parameter zu verändern. Das Messgerät kann auf wechselnde Anwendungsanforderungen abgestimmt werden. Kann im Bereich von 0,9011,0999 eingestellt werden.	
Power Line Frequency (Netzfrequenz) [Freq HZ]	60 Hz	Bietet Störfestigkeit gegen Elektrorauschen aus einer Stromversorgung. Sie ist werkseitig auf den in den USA verwendeten Wert von 60 Hz eingestellt.
	50 Hz	Optionale Einstellung. 50 Hz ist der außerhalb der USA verwendete Wert.
Period (Periode) [Period s]	Dieser Parameter konfiguriert die Häufigkeit der abgetasteten Messungen von 063 Sekunden. Die Einstellung wird in Schritten von 1 Sekunde vorgenommen. Der Wert 0 wird nur für die Kalibrierung verwendet (4 Messungen pro Sekunde). HINWEIS: Die durch das Batteriesymbol angezeigten Parameter beeinflussen die Batterieleistung. Die Abtastperiode beträgt standardmäßig 15 Sekunden.	
Empty Pipe Detection (Leerrohrerkennung)	Empty Pipe ON/OFF (Leerrohrerkennung EIN/ AUS) [On Off]	Bei der Einstellung EIN teilt eine Lehrrohr-Bedingung den Ausgängen mit, dass das Messgerät nicht vollständig gefüllt ist. Bei der Einstellung OFF werden Leerrohre nicht erkannt.
	Threshold (Schwellenwert) [Threshold]	Werkseitig eingestellt und an die Leitfähigkeit von normalem Wasser angepasst.
	Measure (Messen) [Measure] schreibgeschützt	Misst den Istwert des Leerrohrs, schreibgeschützt.

Menü "Messung"

Flow Unit (Einheit Durchfluss) [Flow Unit]

Measure (Messen)

Legt die Maßeinheit für die Durchflussmenge und den Skalenendwert fest. Durch Ändern dieses Parameters wird der Parameter für den Skalenendwert neu eingestellt. Ein Wechsel von GPM zu GPS ändert beispielsweise den Skalenendwert von 60 gal/min auf 1 gal/s.

Anzeige	Einheit Durchfluss	Anzeige	Einheit Durchfluss	
L/S	Liter/Sek.	GAL/S	Gallonen/Sek.	
L/Min	Liter/Min.	er/Min. GAL/Min Gallonen/Min.		
L/h	Liter/Stunde	GAL/H	Gallonen/Stunde	
M3/S	Kubikmeter/Sek.	MG/D	Millionen Gallonen/Tag	
M3/Min	Kubikmeter/Min.	IG/S	Imperial Gallon/Sek.	
M3/H	Kubikmeter/Stunde	IG/Min	Imperial Gallon/Min.	
Ft3/S	Kubikfuß/Sek.	IG/H	Imperial Gallon/Stunde	
Ft3/Min	Kubikfuß/Min.	bbl/Min	Barrel/Min.	
Ft3/H	Kubikfuß/Stunde	OZ/Min	Unzen/Min	

Totalizer Unit (Zählereinheit) [Tot Unit]

Legt die Maßeinheiten für die Zähler fest.

Anzeige	Zählereinheit		
L	Liter		
HL	Hektoliter		
M3	Kubikmeter		
Ft3	Kubikfuß		
GAL	US-Gallonen		
MG	Millionen Gallonen		
IG	Imperial Gallon		
bbl	Barrel		
OZ	Unzen		
AFt	Acre-Fuß		
SFd	Second-Foot-Day		
KG	Kilogramm		

Full Scale Flow (Skalenendwert)

[Full Sca]

Legt den maximalen Durchfluss fest, den das System messen soll. Dieser beeinflusst andere Systemparameter, darunter:

- Schleichmengenunterdrückung Änderungen des Skalenendwerts wirken sich auf die Abschaltschwelle des Messgeräts aus.
- Alarmausgänge bei Änderungen des Skalenendwerts. Passt die Schwellenwerte für die Erzeugung von Sollwertalarmen an.
- Impulsausgänge bei Änderungen des Skalenendwerts. Passt die Impulsfrequenz und das Tastverhältnis an.

Ändern Sie den Skalenendwert entsprechend der Größe des Messgeräts und der Anwendungsanforderungen. Stellen Sie sicher, dass der Skalenendwert innerhalb der vom Messgerät empfohlenen Fließgrenzen

Durchflussbereich: 0,1...32,8 ft/s (0,03...10 m/s)

Der Skalenendwert gilt für beide Durchflussrichtungen.

Wenn die Durchflussmenge den eingestellten Skalenendwert um mehr als 25 % überschreitet, zeigt eine FLOW_OVERLOAD_WARNING-Meldung an, dass der konfigurierte Skalenendwertbereich überschritten wurde. Das Messgerät misst weiter. Dies beeinträchtigt die Latenzzeit der Impulsausgänge und kann zu einem Überlauf führen.

Low Flow Cutoff (Schleichmengenunterdrückung) [Cut Off]

Legt den Schwellenwert fest, bei dem die Durchflussmessung auf Null gesetzt wird. Der Schwellwert kann auf

0...9,9 % des Skalenendwerts eingestellt werden. Die Erhöhung dieses Schwellenwerts verhindert falsche Messwerte wenn aufgrund von Rohrvibrationen oder Systemrauschen kein Durchfluss vorliegt.

Measure (Messen)				
Flow Direction (Durchflussrichtung)	Ermöglicht die Einstellung am Messgerät, dass nur der Vorwärtsfluss (unidirektional) oder sowohl der Vorwärts- als auch der Rückwärtsfluss (bidirektional) gemessen wird.			
[Bi-directional]	Unidirectional (Unidirektional)			
[bi-directional]	Der Durchfluss wird nur in eine Richtung summiert. Die Durchflussrichtung wird durch den Pfeil auf der			
S	Kennzeichnung des Detektors angegeben. Zu den unidirektionalen Messungen auf der Hauptanzeige gehören:			
	T1: Erfasst den Vorwärtsfluss, rücksetzbar über Menü oder Modbus RTU.			
	T2: Erfasst den Vorwärtsfluss, nicht rücksetzbar.			
	Bidirectional (Bidirektional)			
	Der Durchfluss wird in beide Richtungen summiert. Eine Änderung der Durchflussrichtung kann vom Digitalausgang			
	angezeigt werden. Zu den bidirektionalen Messungen auf der Hauptanzeige gehören:			
	T1+: Erfasst den Vorwärtsfluss, rücksetzbar über Menü oder Modbus RTU			
	T1-: Erfasst den Rückwärtsfluss, rücksetzbar über Menü oder Modbus RTU			
	T1N: Erfasst den Gesamtdurchfluss, T+ – T-, rücksetzbar über Menü oder Modbus RTU			
	T2+: Erfasst den Vorwärtsfluss, nicht rücksetzbar			
	T2-: Erfasst den Rückwärtsfluss, nicht rücksetzbar			
	T2N: Erfasst den Gesamtdurchfluss, T+ – T-, nicht rücksetzbar			
T1 Reset (T1 rücksetzen) Ermöglicht die Rücksetzung des Zählers T1.			
[T1]	HINWEIS: Wird das Messgerät als Wasserzähler gemäß der europäischen Richtlinie 2004/22/EG (MID MI-001) oder			
S	OIML R49 verwendet, so ist der Zähler T1 nicht rücksetzbar.			
Median (Median)	Kann auf EIN oder AUS gestellt werden. In der Einstellung EIN filtert die Mediananzeige die auf dem LCD-Display			
[Median]	angezeigten Schwankungen der Durchflussmenge heraus.			
Average (Durchschnitt)				
[Average]	Mittelwert für die Berechnung des aktuellen Durchflusswerts gebildet werden soll. Dies dämpft die Änderungsrate der			
	Durchflussmenge. Der gleitende Durchschnittsfilter (MAV) glättet kurzfristige Schwankungen. Der Wert kann auf 1 bis			
	99 Messperioden eingestellt werden. Mit der Einstellung 1 wird der gleitende Durchschnittsfilter praktisch deaktiviert.			
	Die Verzögerung wird wie folgt berechnet: Verzögerung [s] = MAV x T			
	Die Zeit T ist durch die eingestellte Erregerfrequenz (Periode) des Messgeräts gegeben.			
	Beispiel: MAV = 2 und eine Erregerfrequenz (Periode) von T = 5 s ergibt eine Verzögerung von 10 s.			
A Factor	Mit dieser Einstellung wird der Beschleunigungswert für einen erweiterten gleitenden Durchschnittsfilter konfiguriert.			
(Beschleunigungswert)	Siehe "Erweiterter gleitender Durchschnittsfilter für den Durchfluss" auf Seite 42.			
[A Factor]				
Filter Display	Kann von 099 Sekunden eingestellt werden. Die Anzeige wird seltener aktualisiert, je nachdem, wie hoch die			
(Filteranzeige)	Filteranzeige eingestellt ist.			
[FiltDisp]				

Menü Eingänge/Ausgänge

Eingänge/Ausgänge Liefert eine Ausgangssimulation auf Grundlage eines Prozentsatzes des Skalenendwerts. Simulationen erhöhen die Flow Simulation Zähler nicht. Der Simulationsbereich umfasst -100...100 % des Skalenendwerts. (Strömungssimulation) Mit diesem Parameter können Sie den Simulationsbereich in Schritten von 50 einstellen (AUS, 0, 50, 100, -50, -100). [Simulat] Die Werkseinstellung ist AUS. S **Digital Input** Ermöglicht das Rücksetzen des Zählers T1 oder die Unterbrechung der Durchflussmessung. Nur T1 kann (Digitaleingang) zurückgesetzt werden. [Input] Die Eingangsschaltung erfolgt durch Anlegen einer externen Spannung von 3...35V DC. Verwenden Sie für den Betrieb einen Schließer-Kontakt. **Digital Outputs** Pulse/Unit Ermöglicht es einzustellen, wie viele Impulse pro Maßeinheit an Fernanwendungen übertragen (Digitalausgänge) (Impulse/Einheit) werden sollen. Angenommen, die Maßeinheit ist Gallonen: [Outputs] Wird Impulse/Einheit auf 1 gesetzt (Standardeinstellung), so wird 1 Impuls pro (Fortsetzung auf nächster Gallone gesendet. Seite) Wird Impulse/Einheit auf 0,01 gesetzt, so wird 1 Impuls für je 100 Gallonen gesendet. Impulse/Einheit ist zu konfigurieren, wenn die Funktion des gewählten Ausgangs vorwärts oder rückwärts sein soll. Der Parameter muss zusammen mit den Parametern Pulsbreite und Skalenendwert berücksichtigt werden. Die maximale Impulsfrequenz beträgt 100 Hz. Die Frequenz korreliert mit der Durchflussmenge. Bei Überschreitung der Ausgangsfrequenzgrenzen wird eine PULSE_OVERLOAD_WARNING ausgegeben. Width (Breite) Legt die Einschaltdauer des Sendeimpulses fest. Der konfigurierbare Bereich beträgt 0...500 ms. Die Werkseinstellung ist 0 ms. Konfiguration mit einer Impulsbreite ungleich Null – die Ausschaltdauer des gesendeten Impulses ist abhängig von der Durchflussmenge. Die Ausschaltdauer muss mindestens der konfigurierten Einschaltdauer entsprechen. Beim Skalenendwert ist die Einschaltdauer gleich der Ausschaltdauer. Die konfigurierbare maximale Ausgangsfrequenz ist auf 100 Hz begrenzt. Das Tastverhältnis des Sendeimpulses liegt bei 50 % der Ausgangsfrequenzen über 1 Hz. Der Parameter muss zusammen mit den Parametern Impulse/Einheit und Skalenendwert berücksichtigt werden. Die maximale Impulsfrequenz beträgt 100 Hz. Die Frequenz korreliert

IMPULS_ÜBERLAST_WARNUNG ausgegeben.

Frequency [Hz] (Frequenz [Hz])

Berechnete Impulsfrequenz (in Hz), die dem Skalenendwert entspricht.

mit der Durchflussmenge. Bei Überschreitung der Ausgangsfrequenzgrenzen wird eine

Digital Outputs (Digitalausgänge) (fortgesetzt)

Eingänge/Ausgänge

Legt den Schwellenwert, bei dem der Ausgangsalarm aktiviert wird, als Prozentsatz des Skalenendwerts fest. Durchflussmengen unterhalb des Schwellenwerts aktivieren den Ausgangsalarm.

(Minimum einstellen)

Set Minimum

[Set Min]

Legt den Schwellenwert, bei dem der Ausgangsalarm aktiviert wird als Prozentsatz des Skalenendwerts fest. Durchflussmengen oberhalb des Schwellenwerts aktivieren den Ausgangsalarm.

Function (Funktion)
[Out 1 Func]

[Out 1 Func] [Out 2 Func] [Out 3 Func] [Out 4 Func]

Ermöglicht die Konfiguration der Funktionsweise des zugehörigen Ausgangs. Dabei werden die folgenden Operationen unterstützt:

Funktion	Dig1	Dig2	Dig3	Dig4
Aus	X	X	X	X
Test	X	X	X	X
MinMax	X	Χ	X	X
Leer	X	X	X	X
Fehlermeldung	X	Χ	X	X
Vor	X			
Loopback	X	Χ	X	X
Batteriealarm	X	Χ	X	X
Rückwärts		X		
Richtung			X	
ADE				(automatisch
				eingestellt)

- Inaktiv [Aus] bedeutet, dass der digitale Ausgang ausgeschaltet ist. Es wird empfohlen,
 die Ausgänge im Menü "Ausgangsfunktion" auszuschalten, wenn sie nicht verwendet
 werden. Dies erhöht die Lebensdauer der Batterie.
- Test [Test] löst den Ausgang aus.
- Der Durchfluss-Sollwert [MinMax] zeigt an, wann die Durchflussmenge die durch die Durchflusssollwerte (Set Min, Set Max) festgelegten Schwellenwerte überschreitet.
- Der Leerrohralarm [Leer] zeigt an, dass die Leitung leer ist.
- $\bullet \quad \hbox{Die Fehlermeldung [Fehlermeldung] signalisiert Fehlerzustände des Messger\"{a}ts.}$
- Der Vorwärtsimpuls [Vorwärts] erzeugt Impulse bei Vorwärtsfluss.
- Der Rückwärtsimpuls [Rückwärts] erzeugt Impulse bei Rückwärtsfluss.
- Die Durchflussrichtung [Richtung] gibt die aktuelle Durchflussrichtung an.
- Der Loopback gibt am Ausgang den gleichen logischen Zustand zurück, der am Digitaleingang anliegt.
- Der Batteriealarm-Ausgang wird ausgelöst, wenn ein niedriger Batteriestand erkannt wird.
- ADE [ADE] "Absolute Digital Encoder" wird für das Auslesen externer Messgeräte mit ASCII-Kommunikationsprotokollen benötigt. Diese Einstellung wird automatisch vorgenommen, wenn der Kommunikationsmodus auf ADE eingestellt ist.

Output Mode (Ausgangsmodus) [Out 1 Type] [Out 2 Type] [Out 3 Type] [Out 4 Type]

Ermöglicht die Einstellung des Ausgangsschalters auf Schließer oder Öffner. Bei "Schließer" ist der Ausgangsschalter offen (kein Strom), wenn der Ausgang inaktiv ist, und geschlossen (Strom fließt), wenn der Ausgang aktiv ist.

Bei "Öffner" ist der Ausgangsschalter geschlossen (Strom fließt), wenn der Ausgang inaktiv ist, und offen (kein Strom), wenn der Ausgang aktiv ist.

Menü "Kommunikation"

	Kommunikation: Port-Einstellungen				
Interface (Interface) [Interface]	Ermöglicht die Konfiguration der Kommunikationsschnittstelle. IrDA (Modbus RTU) Seriell (Modbus RTU) HINWEIS: Modbus RTU dient nur zur Programmierung des Messgeräts und zum Auslesen des internen Datenloggers. Eine längere Nutzung, auch im Standby-Modus, verbraucht Strom und kann die Batterie schnell entladen. M-Bus AUS (schaltet die seriellen Schnittstellen aus). Serielle Schnittstellen EIN verkürzt die Lebensdauer der Batterie.				
Serial (Seriell) [Serial]	Baud Rate (Baudrate) [Baudrate] Parity (Parität) [Parity]	Legt die Baudrate fest. Die folgenden Baudraten werden unterstützt: • 9600 (Standard) • 1200 • 2400 Legt die Parität fest. Die folgenden Paritäten werden unterstützt: • gerade (Standard) • ungerade • Mark			
Modbus (Modbus) [Modbus]	Address (Adresse)	Konfiguriert die Modbus-Adresse im Bereich von 1247. Informationen zu den Modbus-Registern finden Sie im Anwendungsdatenblatt "M-5000 Modbus Communication Protocol Memory Map" (verfügbar unter www.badgermeter.com.			
M-Bus (M-Bus) [M-Bus]	Address (Adresse)	Konfiguriert die M-Bus®-Adresse im Bereich von 1247. (Nur verfügbar für die M-Bus-Version M5000.)			
ADE	Control (Kontrolle) Protocol (Protokoll) [Protocol] Dial (Dial) [Dial] Resolution (Auflösung) [Resolution]	EIN/AUS V1 Standardmeldungen V2 erweiterte Meldungen 49 0,000110000			

Menü "Batterie"

		Batteriekonfigurations- und Diagnosedaten (wie Lebensdauer, Restkapazität, gespeicherte Zähler) zurückzusetzen.								
S		die Batterie nicht ersetzt wurde. Außerdem ist dieser Vorgang erforderlich, um die notwendigen Messdaten im nichtflüchtigen Speicher zu speichern und gleichzeitig alle								
		Benutzer wählt die Kapazität des neuen Batteriesatzes aus und muss dann die Batterie ersetzen. Im Eingabemodus ist es nicht möglich, diesen Menüpunkt zu verlassen, solange								
Change (Ändern)	Optionen: 19, 38, 70, Ah	Ermöglicht es dem Benutzer, die Batterie in einem kontrollierten Prozess zu wechseln. Der								
S	30, AUS	ausgelöst wird, wenn die Restkapazität der Batterie unter den Schwellenwert fällt. Stellen Sie <i>AUS</i> ein, wenn der Ausgangsalarm nicht benötigt wird.								
Limit (Limit)	Optionen: 5, 10, 15, 20, 25,	Legt den Schwellenwert für die Restkapazität der Batterie fest, unter dem ein Ausgangslarm								
(schreibgeschützt)										
[CAPAcitY]		erie sollte die maximale Kapazität erreichen oder nahezu erreichen.								
Capacity (Kapazität)	Zeigt die aktuelle Batteriekar	pazität in Amperestunden oder Prozent an.								
(schreibgeschützt)										
[Ah]										
Amp-Hours (Amperestunden)	Zeigt die Batteriekapazität in	Form von verbrauchten Ah geteilt durch die Gesamtkapazität in Ah an.								
(Einschaltzeit) (schreibgeschützt)	Zoigt die Dattorielen 't-'t-'	Forms you work rough too. Ab gotailt durigh die Coopethopogität in Ab or								
OnTime	Diagnose der Zeit in Stunder	n, in der das Messgerät mit Strom versorgt wurde.								
(schreibgeschützt)		nsschnittstellen ab.								
(Lebensdauer)	_	Zeigt die verbleibende Batterielebensdauer in Jahren an, abhängig von den aktuell gewählten Parametern. HINWEIS: Die Batterielebensdauer hängt hauptsächlich von der Erregerfrequenz (Periode) und den gewählten								
Voltage (Spannung) (schreibgeschützt) Lifetime	Zeigt die aktuelle Batteriespa									
(schreibgeschützt)	Zoiest die aktuelle Datterieses									
(Einschaltzähler)	wurde (z. B. Batterie entfernt	und ersetzt).								
PwrUpCnt	(Einschaltzähler) Ein Diagnos	ezähler, der anzeigt, wie oft das Messgerät zurückgesetzt oder aus- und wieder eingeschaltet								

Menü "Verschiedenes"

	Verschiedenes
Settling (Einregeln) [schreibgeschützt]	Die Zeit, die der Magnetkreis braucht, um sich zu regeln. Eine technische Diagnose.
Language (Sprache) [Language]	Ermöglicht die Änderung der aktuellen Sprache. Die Standardeinstellung ist Englisch. Die folgenden Sprachen werden unterstützt: Deutsch, Tschechisch (Cestina), Spanisch (Espanol), Französisch (Francais), Russisch (Poccии), Italienisch (Italiano), Türkisch (Turk) und Polnisch (PolSKi).
Date (Datum) [Date DMY] [schreibgeschützt]	Kalender in Echtzeit. Tag, Monat und Jahr müssen nach dem Austausch oder Ausschalten der Batterie neu programmiert werden.
Time (Uhrzeit) [Time]	Echtzeituhr. Stunde, Minute und Sekunde müssen nach dem Austausch oder Ausschalten der Batterie neu programmiert werden.
EEPROM (EEPROM) [EEPROM]	Zum Löschen sämtlicher Logdateien das EEPROM formatieren. Zähler und Konfiguration bleiben bei Formatierungen unberührt.
Battery (Batterie) [Battery]	Speichert Zähler im nichtflüchtigen Speicher zur Vorbereitung auf einen Batteriewechsel.
Restart (Neustart) [Restart]	Bietet die Möglichkeit, die Elektronik des Messgeräts zurückzusetzen.
HDD Free (HDD frei) [HDD Free] (schreibgeschützt)	Zeigt an, wie viel Flash-Speicherplatz frei ist.
Polarity (Polarität) [Polar V]	Gemessene Polarisationsspannung der Elektrode
(schreibgeschützt)	(für Servicezwecke).
Datalogger (Datenlogger) [DataLog]	Das Aufzeichnungsintervall kann auf die folgenden Werte eingestellt werden: 1 min / 15 min / 1 h / 6 h / 12 h / 24 h. Weitere Informationen finden Sie im <i>Benutzerhandbuch Datenaufzeichnung</i> .
LCD Contrast (LCD- Kontrast) [ContrASt]	Stellt den LCD-Kontrast im Bereich von 09 ein, wobei 9 die höchste Kontrasteinstellung ist. Der Kontrast ändert sich nicht sofort beim Ändern dieser Ziffer. Zum Ändern des Kontrasts SPEICHERN drücken. Bitte beachten, dass eine höhere Kontrasteinstellung die Batterielebensdauer des Geräts verringern kann.
LCD Test (LCD-Test) [LCD Test]	Nach dem Drücken von E erscheinen alle Anzeigesegmente etwa 2 Sekunden lang.

Menü, Informationen"

	Infos
Serial Number (Seriennummer) [SerNum] (schreibgeschützt)	Seriennummer der Elektronikplatine.
Software Version (Softwareversion) [Version] (schreibgeschützt)	Softwareversion des Geräts.
Compilation Date (Erstellungsdatum) [Compilat] (schreibgeschützt)	Datum der Softwareversion.
OPT CRC (OPT CRC) [OPT CRC] (schreibgeschützt)	Prüfsumme des Software-Updates.
APP CRC (APP CRC) [APP CRC] (schreibgeschützt)	Prüfsumme der Anwendung.
OIML Mode (OIML-Modus) [OIML mode] (schreibgeschützt)	Wird der Zähler als Wasserzähler gemäß OIML R49 oder MID verwendet, muss der Modus auf EIN stehen. In diesem Fall sind alle Parameter "schreibgeschützt".

Menü "Störungen"

Störungen									
Preamp Overload (Überlastung des Vorverstärkers)	Im Menü "Störungen" werden die Fehler und die Häufigkeit ihres Auftretens pro Stunde angezeigt. Eine Erklärung der Fehler und eine Anleitung zur Fehlerbehebung finden Sie unter "Fehler und								
Coil (Spule)	Warnungen" auf Seite 48.								
Hardware Error									
Common Mode Voltage Overload (Gleichtaktspannungsüberlastung)									
Partial Filled (Teilweise Gefüllt)									
Pulse Output Overload (Überlastung des Impulsausgangs)									
Empty Pipe (Leerrohr)									
Volume Overload (Lautstärkeüberlastung)									

HINWEIS: COIL_ERROR und EMPTY PIPE WARNING können gleichzeitig durch Text und Symbol angezeigt werden

SICHERHEIT

Die Sicherheitsfunktion des M5000 bietet die Möglichkeit, den Zugang zum Messgerät durch eine 6-stellige persönliche Identifikationsnummer (PIN) zu beschränken. Das Standardpasswort ist 000000, wenn kein anderes Passwort eingegeben wird. Es müssen nicht alle Zugriffsebenen eingestellt werden. Wenn keine PINs gesetzt sind, hat jeder Benutzer des M5000 Zugriff auf alle Funktionen, kann aber keine Parameter ändern.

HINWEIS: Wird das Messgerät als Wasserzähler gemäß der europäischen Richtlinie 2004/22/EG (MID MI-001) oder OIML R49 eingesetzt, sind alle Parameter gesperrt und nur lesbar. In diesem Fall ist die Passwortfunktion nicht umsetzbar.

WICHTIG

Bei der Auslieferung neuer M5000-Messgeräte befindet sich der Jumper für die Sicherheitsfunktion auf der Unterseite der Elektronikplatine in der Position INAKTIV (wobei der Jumper den mittleren und den rechten Pin überbrückt). Nach dem Einstellen einer PIN den Jumper in die Position AKTIV versetzen (wobei der Jumper den mittleren und den linken Pin überbrückt), damit die Sicherheitsfunktionen verwendbar werden. Siehe die nachstehenden Abbildungen unter "Aktivieren der Sicherheitsfunktion". Wenn Sie eine PIN für den Administrator-Modus setzen und später zusätzlich eine Benutzer- oder Service-Pin setzen möchten, bewegen Sie den Jumper zunächst zurück in die Position INAKTIV, richten dann eine andere Pin ein und setzen ihn dann zurück in die Position AKTIV.

Der Systemadministrator kann für jede der drei verschiedenen Zugriffsebenen eine einzige PIN einrichten:

- Administrator erlaubt den Zugriff auf alle Konfigurationsmasken des Menüs des M5000.
- Service erlaubt den Zugriff auf Konfigurationsmasken des Menüs auf Service- und Benutzerebene.
- Benutzer erlaubt nur den Zugriff auf die Konfigurationsmasken auf Benutzerebene.

HINWEIS: Wenn Sie eine PIN verloren haben, wenden Sie sich an den technischen Kundendienst von Badger Meter unter +1 800-456-5023.

Die Sicherheitseinstellungen gelten auch für den Fernzugriff. Fernschreibzugriff über Modbus auf das Messgerät ist blockiert, es sei denn, der Benutzer ist remote eingeloggt.

Setzen einer PIN

- 1. Im Main Menu (Hauptmenü) die rechte Pfeiltaste drücken.
- 2. Im Menü Meter Setup (Messgerät einrichten) die Pfeiltaste nach oben drücken, bis das Menü Pin angezeigt wird.
- 3. Die **rechte Pfeiltaste** drücken, um das Menü PINS Control (PIN-Verwaltung) anzuzeigen.
- 4. Die rechte Pfeiltaste drücken, so dass EIN oder AUS blinkt.
- 5. Wenn entweder EIN oder AUS blinkt, die **Pfeiltaste nach oben** drücken, um EIN anzuzeigen.
- 6. Die Taste **EXIT SAVE** drücken, um die Einstellung EIN zu speichern.
- 7. Wenn das Menü *Control (Kontrolle)* blinkt, die **Pfeiltaste nach oben** drücken, um die gewünschte Sicherheitsstufe (Benutzer, Service oder Admin) anzuzeigen.
- 8. Wenn die gewünschte Sicherheitsstufe blinkt, die rechte Pfeiltaste drücken, um die obere Reihe der sechs Nullen (Ziffern) anzuzeigen.
- 9. Drücken Sie die Pfeiltaste nach oben, um die erste Ziffer zu ändern, dann die rechte Pfeiltaste, um die nächste Ziffer auszuwählen.
- 10. Die Taste EXIT SAVE drücken, um die PIN-Nummer für diese Sicherheitsstufe zu speichern.

Aktivieren der Sicherheitsfunktion

- 1. Den Gehäusedeckel abschrauben und öffnen.
- 2. Die 4 Schrauben, die die Platine halten, lösen und entfernen.
- 3. Die Platine umdrehen, sodass die Rückseite nach oben zeigt.
- 4. Den Jumper unten in der Mitte der Platine suchen.
- 5. Den Jumper von der Position INAKTIV (Überbrückung des mittleren und rechten Pins) in die Position AKTIV (Überbrückung des mittleren und linken Pins) versetzen.
- 6. Die Platine umdrehen, sodass sie nach oben zeigt.
- 7. Die Platine mit 4 Schrauben befestigen.
- 8. Den Gehäusedeckel schließen und die 4 Schrauben anziehen.

Die gespeicherte PIN-Nummer ist dieselbe PIN-Nummer wie für die Anmeldung am Verstärker.

HINWEIS: Nach der Arbeit mit dem M5000 unbedingt abmelden. Andernfalls meldet sich der M5000 fünf Minuten nach der letzten Aktivität von automatisch ab.

Einloggen

Zum Ändern von Parametern des magnetisch-induktiven Durchflussmessers muss die eingegebene PIN die für den Parameter erforderliche Sicherheitsberechtigung aufweisen.

Um eine PIN einzugeben, zum Menü *Login* gehen und die PIN für die gewünschte Sicherheitsstufe eingeben. Sobald Sie richtig angemeldet sind, erscheint auf dem Display des Messgeräts das Symbol "entsperrt". Bei Eingabe einer falschen PIN wird eine **PIN-Fehlermeldung** angezeigt.

Abmelden

Zum Abmelden die Schritte 1 bis 8 unter "Setzen einer PIN" ausführen. Bei Schritt 9 eine ungültige PIN eingeben, dann **EXIT SAVE** drücken.

PIN-Menü

	PIN
Control (Kontrolle)	Es stehen zwei Optionen zur Verfügung:
	EIN (erfordert PIN-Konfiguration)
A	• AUS
User (Benutzer)	Benutzer, die mit dieser PIN angemeldet sind, haben Zugang zu allen Benutzerebenen. Benutzer auf dieser Ebene haben keinen Zugriff auf Service- oder Administratorfunktionen.
Service (Service)	Benutzer auf dieser Ebene haben Zugriff auf Service- und Benutzerfunktionen. Benutzer auf dieser Ebene haben keinen Zugriff auf Administratorfunktionen.
Admin	Benutzer, die mit dieser PIN angemeldet sind, haben Zugang zu allen Funktionen. Auf dieser Ebene haben Benutzer vollen
(Administrator)	Zugriff auf das Messgerät.
Random (Zufallszahl)	Erzeugt eine Zufallszahl, die bei Verlust einer PIN verwendet wird. Der technische Kundendienst von Badger Meter
(benötigt diese Nummer, um eine Master-PIN zu erstellen.
Emergency (Notfall)	Falls die Admin-PIN verloren gegangen ist, geben Sie zum Entsperren des Messgeräts die Master-PIN ein, die Sie vom
	technischen Kundendienst von Badger Meter erhalten haben.

ERWEITERTER GLEITENDER DURCHSCHNITTSFILTER FÜR DEN DURCHFLUSS

Einführung

Dieser Abschnitt befasst sich mit der Beschreibung des im M5000 Mag Meter verwendeten erweiterten gleitenden Durchschnittsfilters. Dieser Abschnitt gibt Anweisungen zur Funktionsweise des erweiterten gleitenden Durchschnittsfilters für die Glättung von Schwankungen der vom M5000 gemessenen Strömungsgeschwindigkeit und erklärt die Konfiguration der Filtereinstellungen für bestimmte Anwendungen.

Definition

Der standardmäßige gleitende Durchschnittsfilter, der von der M5000-Firmware verwendet wird, wird vom Benutzer aktiviert, indem im Menüpunkt *Durchschnitt* des Menüs *Messung* ein Wert größer als 1 eingestellt wird. Um auf diese Einstellung zuzugreifen, zu *Main Menu (Hauptmenü) > Measure (Messung) > Average (Durchschnitt)* navigieren.

Dieser Wert legt fest, wie viele Messwerte der Durchflussmenge für die Berechnung des aktuellen Werts der Durchflussmenge gemittelt werden. Dieser Wert wird auch als Dämpfungsfaktor oder durchschnittliche Fenstergröße definiert. Die Mittelwertbildung/Filterung wird für verrauschte Messanwendungen empfohlen (z. B. verschmutztes Wasser, Wasser mit niedriger Leitfähigkeit oder die Durchflussmessung von Schlamm), bei denen Unregelmäßigkeiten in der Prozessflüssigkeit zur Instabilität des gemessenen Durchflusses beitragen. Mit Hilfe eines gleitenden Durchschnittsfilters können die durch die Ungleichmäßigkeiten der Flüssigkeit verursachten Durchflussschwankungen geglättet werden. Andererseits hat der gleitende Durchschnitt den Nachteil, dass er nur langsam auf tatsächliche Durchflussänderungen reagiert. Dies schränkt die Verwendung des standardmäßigen gleitenden Durchschnittsfilters in vielen Anwendungen, üblicherweise in Regelsystemen, ein.

Der erweiterte gleitende Durchschnittsfilter ermöglicht eine schnellere Reaktion auf tatsächliche Durchflussänderungen. Dieses Erkennungssystem verwendet ausschließlich die Fenstergröße des gleitenden Durchschnitts und einen Beschleunigungsfaktor, der einen Maximalwert für den Akkumulator ergibt. Der Benutzer des M5000 kann den Beschleunigungsfaktor über die Option A Factor (A-Faktor) im Menü Measure (Messung) konfigurieren. Um auf diese Einstellung zuzugreifen, navigieren Sie zu Main Menu (Hauptmenü) > Measure (Messung) > A Factor (A-Faktor).

Die Beschleunigung wird durch Akkumulation eines Beschleunigungsverhältnisses (Beschleunigungsband) erfasst. Jedes Besc unigungsband (bzw. jede Bandbreite) ist genau 2 mal so breit wie der Abschaltungswert bei niedrigem Durchfluss. Wenn sich der Rohc c chfluss in dieser Beschleunigung befindet, verwendet der erweiterte gleitende Durchschnittsfilter eine Exponentialkurve, um den gefil E en Durchflusswert anzupassen, und reagiert somit viel schneller als ein standardmäßiger gleitender Durchschnittsfilter.

Das I spechleunigungsverhältnis wird berechnet, indem man berechnet, wie viele Beschleunigungsbandbreite(n) der Rohdurchfluss vom Refei gradurchfluss der Beschleunigung entfernt ist. Der Referenzdurchfluss der Beschleunigung ist in der Regel der letzte gemittelte Durc gusswert. Wichtig ist an dieser Stelle, dass der Referenzdurchfluss der Beschleunigung einen anderen Wert haben kann als die tatsä gliche Durchflussmenge, die auf dem M5000-Display angezeigt wird. Das liegt daran, dass sich der Referenzwert nur dann ändert, wenigen htweder die Akkumulation des Beschleunigungsverhältnisses den durch den Wert des Beschleunigungsfaktors (A-Faktor) gege genen her Durchflussbeschleunigung überschreitet oder wenn der Rohdurchfluss weniger als eine volle Bandbreite vom Referenzdurchfluss entfernt ist (Durchflussverhältnis = 0). Letzteres ist der Fall, wenn eine nahezu stabile Durchflussmenge gemessen wird. Bei Eintritt eines dieser Szenarien wird der Beschleunigungsreferenzwert neu berechnet und die letzte, gemittelte Durchflussmenge wird verwendet.

Wenn schließlich die Akkumulation des Beschleunigungsverhältnisses den Wert des Beschleunigungsfaktors übersteigt, bedeutet dies für den Algorithmus, dass eine "echte" Veränderung des Durchflusses stattgefunden hat. Hier wird ein neues Durchschnittsfenster für die gemessene Rohdurchflussmenge festgelegt.

Verhältnis:
Akkumulator:

Messwert (-)

Erklärung

Weitere Informationen zur Funktionsweise des erweiterten gleitenden Durchschnittsfilters finden Sie unter *Abbildung 36*. Legende für das Schaubild:

- Die grüne Kurve zeigt die mit dem standardmäßigen gleitenden Durchschnittsfilter gefilterte Durchflussmenge an.
- Die pinkfarbene/magentarote Kurve zeigt die mit dem erweiterten gleitenden Durchschnittsfilter gefilterte Durchflussmenge an.
- Die schwarze Kurve zeigt die gemessene Rohdurchflussmenge an.
- Die hellblaue Linie ist der Referenzdurchfluss der Beschleunigung.
- · Die rot gestrichelten Linien definieren die Beschleunigungsbänder in positiver Flussänderungsrichtung.
- · Die blau gestrichelten Linien definieren die Beschleunigungsbänder in negativer Flussänderungsrichtung.
- Die braunen vertikalen Linien geben das Beschleunigungsverhältnis für jeden Messwert an, d. h. die Anzahl der Bänder, die von der Referenz zur Rohdurchflussmenge durchlaufen werden.

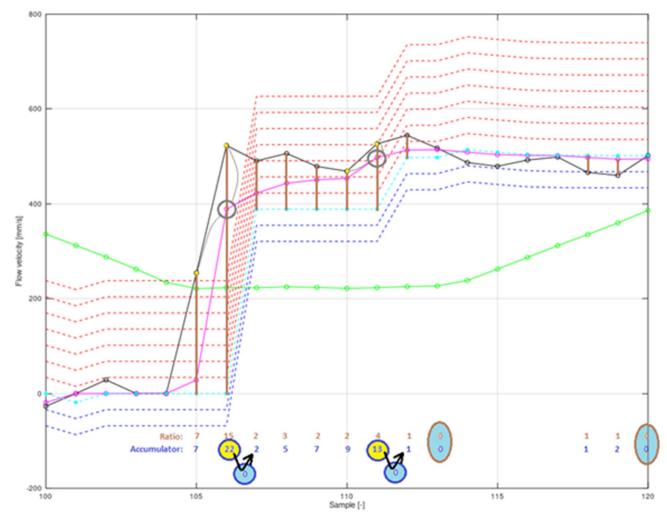


Abbildung 37: Diagramm zur Verarbeitung und Filterung der Strömungsgeschwindigkeit beim Übergang von Null auf 500 mm/s

In *Abbildung 36* werden der standardmäßige gleitende Durchschnittsfilter und der erweiterte gleitende Durchschnittsfilter während des Übergangs des tatsächlichen Durchflusses von stehendem Wasser (Pumpe aus, kein Durchfluss) zu einem konstanten Durchfluss von etwa 500 mm/s (Pumpe ein) demonstriert. Die Abtastrate wurde auf 15 s eingestellt (empfohlener Batteriemodus), und es wurde ein Durchflusssensor mit DN50 verwendet. Die schwarze Kurve zeigt den ungefilterten Rohmesswert der Strömungsgeschwindigkeit an, die grüne Kurve entspricht der Filterung mit dem standardmäßigen gleitenden Durchschnittsfilter (MA) mit der Fenstergröße 10. Die magentafarbene Kurve zeigt die Anwendung des erweiterten gleitenden Durchschnittsfilters (AMA) mit einer Periodenlänge von 10 und einem Beschleunigungsfaktor von 10 an. Das Diagramm veranschaulicht die Stabilisierung des gemessenen und gefilterten Durchflusses durch den AMA. Der Standard-MA ist für eine solche Anwendung nicht geeignet, da die Einschwingzeit zu lang ist. Die Einschwingzeit des AMA ist mit ca. zwei Messwerten relativ kurz, wenn das Fehlerfenster klein ist.

Ein Blick auf die Einzelheiten des Diagramms zeigt, dass bei Messwert 105 die Pumpe eingeschaltet wurde und sich der Rohdurchfluss änderte. Es fällt auf, dass bei Messwert 105 der Rohdurchfluss (schwarz) 7 Beschleunigungsbänder von der Beschleunigungsreferenz (hellblau) entfernt ist. Dies wird durch die braune vertikale Linie verdeutlicht. Diese sieben Bänder werden zum akkumulierten Wert hinzuaddiert. Außerdem wird darauf hingewiesen, dass die berechnete AMA-Durchflussmenge (pinkfarbene Linie) bereits mit Veränderung auf einer exponentiellen Kurve reagiert, da sich der Rohdurchfluss beschleunigt.

Bei Messwert 106 ist der Rohdurchfluss stärker angestiegen (höhere Beschleunigung). Der Unterschied zwischen Rohdurchfluss und Referenzwert beträgt nun 15 Beschleunigungsbänder. Diese 15 werden dem Akkumulator hinzugefügt. Der Akkumulator hat nun den eingestellten Beschleunigungsfaktor von 10 überschritten und es muss ein neuer Referenzwert für den AMA-Filter berechnet werden. Der Vorteil des erweiterten gleitenden Durchschnittsfilters ist bei Messwert 106 und den folgenden 10 bis 15 Messwerten deutlich erkennbar. Die pinkfarbene AMA-Kurve kommt dem Rohwert – der realen – Strömungsgeschwindigkeit sehr viel näher als die Standard-MA-Kurve (grün). Erst wenn das Durchschnittsfenster mit 10 Messwerten gefüllt ist, kann die grüne Kurve auf die Änderung des Rohdurchflusses reagieren. Bei einer Abtastrate von 15 Sekunden bedeutet dies, dass mindestens 150 Sekunden vergehen, bevor der standardmäßige gleitende Durchschnittsfilter auf die Änderung des tatsächlichen Durchflusses reagiert.

Bei Messpunkt 111 kommt es erneut zu einer Akkumulation von Beschleunigungsverhältnissen, die den Beschleunigungsfaktor von 10 übersteigt. Die Referenz nimmt beim folgenden Messwert, Messwert 112, eine neue Position ein. Die neue eingenommene Position hat die gleiche Strömungsgeschwindigkeit wie die vorherige gefilterte Strömungsgeschwindigkeit (pinkfarbene Kurve) und verläuft horizontal zu ihr.

Der Durchfluss stabilisiert sich etwa am Messwert 113 und der Rohdurchfluss liegt innerhalb des ersten Beschleunigungsbandes entfernt vom Referenzwert. Dies wird als kontinuierlicher Durchfluss behandelt und das Verhältnis wird zusammen mit dem Akkumulator auf Null zurückgesetzt. In diesem Fall wird ein neuer Referenzwert berechnet, um in Zeiten eines kontinuierlichen Durchflusses eine genaue Verfolgung des Rohdurchflusses zu gewährleisten.

Konfiguration der durchschnittlichen Periodenlänge und des Beschleunigungsfaktors

Der erweiterte gleitende Durchschnittsfilter kann deaktiviert werden, indem der Beschleunigungsfaktor auf 0 gesetzt wird. In diesem Szenario kann der gleitende Durchschnittsfilter weiter verwendet werden. Der Maximalwert für den Beschleunigungsfaktor beträgt 99.

Um alle Filter mit Hilfe eines gleitenden Durchschnitts zu deaktivieren, setzen Sie den Wert für den Durchschnitt auf 1. Dadurch erhält der gleitende Durchschnitt eine Fenstergröße von 1 und alle Filter werden deaktiviert. Der Maximalwert für die durchschnittliche Fenstergröße beträgt 99.

Für die meisten Anwendungen sind die optimalen Bereiche für die AMA-Filtereinstellungen wie folgt:

- Fenstergröße (Durchschnitt): 10 bis 40
- Beschleunigungsfaktor (A-Factor): 5 bis 15

Bei der Konfiguration der Einstellungen für den erweiterten gleitenden Durchschnittsfilter (Durchschnitt und A-Faktor) sollte Folgendes beachtet werden:

- 1. Wie schnell muss die Durchflussmenge auf eine echte Durchflussänderung reagieren?
 - a. Wenn eine schnelle Reaktion erwünscht ist, verwenden Sie einen kleineren Beschleunigungsfaktor von ca. 5 bis 10 und eine durchschnittliche Fenstergröße von ca. 10 bis 20.
 - b. Ist eine schnelle Reaktion nicht wichtig, kann eine wesentlich größere durchschnittliche Fenstergröße (40 oder höher) verwendet und der Beschleunigungsfaktor auf 0 oder einen Wert, der höher als empfohlen ist (z. B. 20 oder mehr), gesetzt werden.
- 2. Wie ist das Messintervall konfiguriert? Erfolgt die Messung alle 15 Sekunden (Werkseinstellung), schneller oder langsamer?
 - a. Je niedriger das konfigurierte Intervall, desto schneller füllt sich der Puffer für den gleitenden Durchschnitt.
 - b. Wenn das Messintervall 15 Sekunden beträgt und der Durchschnitt auf 10 gesetzt ist, ist der Puffer in 150 Sekunden gefüllt.
 - c. Wenn die Abtastperiode jedoch auf 2 Sekunden und der Durchschnitt auf 10 Sekunden eingestellt ist, füllt sich der Puffer stattdessen in 20 Sekunden. Mit abnehmendem Messintervall reagiert die gefilterte Durchflussmenge wesentlich stärker sowohl auf Rauschen als auch auf echte Durchflussmessungen. Dies geht jedoch auf Kosten einer kürzeren Batterielebensdauer für das Produkt.
 - d. Das Messintervall beeinflusst die Verwendung des AMA-Filters und die zu seiner Konfiguration verwendeten Einstellungen.
- 3. Was ist das typische Strömungsprofil für die Anwendung? Ändert sich der Durchfluss laufend? Wie stark verändert sich der Durchfluss? Nähert sich der Durchfluss der Schleichmengenunterdrückung oder dem Nulldurchfluss an? Welcher Rohrdurchmesser wird für die Anwendung verwendet?
 - a. Wenn die Durchflussmenge generell sehr stabil ist und keine großen Änderungen der Durchflussmenge auftreten, besteht der Hauptzweck des Filters darin, das Rauschen der Messungen zu glätten. Zu diesem Zweck verwenden Sie eine kleine durchschnittliche Fenstergröße (möglich ist 10 oder weniger). Der Beschleunigungsfaktor kann ebenfalls niedrig eingestellt werden (idealerweise 5 bis 10).
 - b. Wenn die Durchflussmenge große tatsächliche Schwankungen aufweist, wird eine größere durchschnittliche Fensterlänge (20 bis 30) und ein moderater Beschleunigungsfaktor (10 bis 15) empfohlen.

- c. Ist die Durchflussmenge sehr niedrig, nahe der Schleichmengenunterdrückung, verwenden Sie eine größere durchschnittliche Fenstergröße (20 oder mehr) und einen niedrigen Beschleunigungsfaktor (z. B. 2 bis 10).
- d. Bei größeren Rohren (z. B. DN300 und höher) kommt es zu größeren Störspitzen. Diese Spitzen sollten bei der Wahl der durchschnittlichen Fenstergröße berücksichtigt werden. Ein größerer Durchschnittswert kann verwendet werden, beispielsweise ein Wert von 40 bis 50.
- e. Auch die Qualität der zu messenden Flüssigkeit beeinflusst das Signal-Rausch-Verhältnis. Dies wiederum führt zu häufigeren Störspitzen in den Messwerten des Rohdurchflusses. Bei Anwendungen mit schlechter Flüssigkeitsqualität oder bei Anwendungen, bei denen Medien zusammen mit der Flüssigkeit durch das Rohr fließen, sollte ein größerer Beschleunigungsfaktor verwendet werden, beispielsweise ein Wert von bis zu 20.

WARTUNG

Eine vorgeschriebene, vorbeugende oder planmäßige Wartung für die Elektronik oder das Durchflussrohr des magnetisch-induktiven Durchflussmessers M5000 sollte nach ordnungsgemäßer Installation nicht erforderlich sein.

Bei bestimmten Ereignissen kann es jedoch erforderlich sein, dass das Personal folgende Maßnahmen ergreift:

- Reinigung von Durchflussrohr und Elektrode
- Austausch der Platine

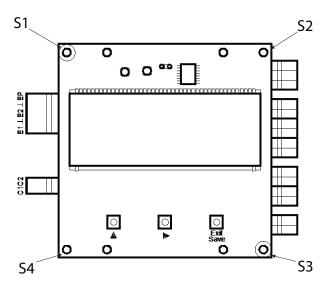
AWARNUNG

KEINE KOMPONENTEN IM INNEREN DES VERSTÄRKERS ODER DES VERTEILERKASTENS REINIGEN.

Reinigung des Durchflussrohrs und der Elektrode

Abhängig von den Eigenschaften der Prozessflüssigkeit, der Durchflussmenge und der Umgebung müssen Durchflussrohr, Elektroden, Verstärkergehäuse/Verteilerkasten und Verstärkerfenster gelegentlich gereinigt werden.

Zum Reinigen des Durchflussrohrs und der Elektroden die Materialhandhabungs- und Reinigungsverfahren befolgen, welche in den Richtlinien des Sicherheitsdatenblatts (SDB) für das Produkt/die Produkte, die mit dem Durchflussrohr und den Elektroden in Kontakt waren, dokumentiert sind.


Sollte eine Reinigung des Durchflussrohrs und/oder der Elektroden erforderlich werden:

- 1. Den Detektor von der Rohrleitung trennen.
- 2. Die Elektroden gemäß den SDB-Richtlinien reinigen.
- 3. Den Detektor wieder an die Rohrleitung anschließen.

Ersetzen der Platine

Wenn die Platine beschädigt ist, anhand der folgenden Anweisungen austauschen.

- 1. Die Stecker der Elektrode und der Spule abziehen.
- 2. Die Schrauben S1-S4 ausschrauben und entfernen.

- 3. Die alte Platine entfernen.
- 4. Die neue Platine einsetzen.
- 5. Mit den Schrauben S1-S4 befestigen. Die Stecker der Elektrode und der Spule einstecken.
- 6. Falls erforderlich, die neue Platine für das vorhandene Messgerät konfigurieren (Detektor, Größe).

FEHLERSUCHE UND-BEHEBUNG

Der magnetisch-induktive Durchflussmesser M5000 ist für eine langjährige, optimale Leistung ausgelegt. Sollte es jedoch zu einer Fehlfunktion kommen, empfehlen wir Ihnen, einige Punkte zu prüfen, bevor Sie sich an unseren technischen Kundendienst oder Ihren örtlichen Badger-Meter-Vertreter wenden.

HINWEIS: Wenn die gemessene Flüssigkeit eine hohe Konzentration an leitfähigen Feststoffen aufweist, können sich Ablagerungen an den Innenwänden der Auskleidung und den Elektroden bilden. Diese Ablagerungen führen zu einer Verringerung der Messleistung. Badger Meter empfiehlt daher, das Messgerät nach sechs Monaten auszubauen und die Auskleidung und die Elektroden zu überprüfen. Falls Ablagerungen vorhanden sind, diese mit einer weichen Bürste entfernen. Den Prüfvorgang halbjährlich oder bis ein angemessener Prüfzyklus für die jeweilige Anwendung festgelegt werden kann wiederholen.

Weitere allgemeine Bedingungen sind:

Beschreibung	Mögliche Ursache	Empfohlene Maßnahmen			
Durchfluss ist vorhanden,	Signalkabel abgeklemmt	Signalkabel prüfen			
aber die Anzeige zeigt "0" an	Detektor entgegen der Hauptströmungsrichtung montiert (siehe Pfeil auf dem Typenschild)	Detektor um 180° drehen oder Klemme E1 und E2 tauschen oder auf bidirektionalen Betrieb umprogrammieren			
	Spulen- oder Elektrodenkabel vertauscht	Kabelverbindungen auf Querverdrahtung prüfen			
	Fehlerhafte Schleichmengenunterdrückung oder fehlerhafter Skalenendwert	Standardeinstellungen ändern			
Ungenaue Messung	Fehlerhafte Kalibrierung	Parameter (Detektorfaktor und -größe) gemäß dem			
	Falsche Kalibrierungsparameter	mitgelieferten Datenblatt überprüfen			
	Rohr nicht vollständig gefüllt oder Luft im Rohr	Prüfen, ob das Messgerät vollständig mit Flüssigkeit gefüllt ist			
	Leitfähigkeit der Flüssigkeit unzulässig	Leitung entlüften, um Luftblasen zu entfernen			
	Flüssigkeitsgemisch unzulässig	Leitung entiaiten, um Luitbiasen zu entiemen			
	Fehlende oder unzureichende Erdung	Erdung überprüfen und eventuelle Probleme beheben			
Anzeige leer	Batterie leer	Batterie ersetzen			
Durchflusswert	Detektorfaktor	Wert auf der Kennzeichnung prüfen			
bekanntlich falsch	Ablagerungen auf Elektroden und/oder Auskleidung	Ablagerungen prüfen und entfernen			
	Falsche Rohrgröße programmiert	Gegebenenfalls Größe überprüfen			
Durchflussanzeige unbeständig	Kabelproblem	Sicherstellen, dass das Kabel abgeschirmt ist und nicht vibriert.			
	Erdungsproblem	Sicherstellen, dass das Messgerät ordnungsgemäß geerdet ist			
	Teilweise gefülltes Rohr	Sicherstellen, dass das Rohr mit Flüssigkeit gefüllt ist			
	Luft im Rohr	Sicherstellen, dass die Flüssigkeit keine Luftblasen enthält			
	Leitfähigkeit der Flüssigkeit unzulässig	Sicherstellen, dass sich der Verstärker nicht zu nahe an elektrischen Störquellen befindet.			
BEACON zeigt mehrere geschätzte Durchflussereignisse für Messgeräte an, die mit ORION® Cellular LTE-Endpunkten verbunden sind	ORION Cellular LTE-Endpunkte erfordern zusätzlichen Widerstand	Fügen Sie einen 15K-Widerstand an der M5000-Klemmleiste hinzu. Siehe "Hinzufügen eines Widerstands mit ORION Cellular LTE" auf Seite 50.			

Fehler und Warnungen

Anzeige	Grund	Fehlerbehebung			
[HW Error] HARDWARE_ERROR	Die Platine ist möglicherweise beschädigt.	Kontaktieren Sie den technischen Kundendienst von Badger Meter.			
[VolOver] COMMON_MODE_VOLTAGE_	Die Gleichtaktspannung ist kleiner als -2,0 V oder größer als +4,1 V.	Stellen Sie sicher, dass das Messgerät richtig geerdet ist.			
OVERLOAD	Verschmutzte Elektroden.	Reinigen Sie die Elektroden.			
[EmptyPi] EMPTY_PIPE_WARNING	Die gemessene Impedanz zwischen der Leerohr-Elektrode und der Erdung hat den eingestellten Wert überschritten.	 Stellen Sie sicher, dass das Rohr gefüllt ist. Prüfen Sie den Schwellenwert für Leerrohre. Er sollte 60000 Ω betragen (entspricht 			
	Detektor leer.	20 μS/cm).			
[Output] PULSE_OVERLOAD_WARNING	Am Durchflussausgang ist ein Überlauf aufgetreten.	Verringern Sie die Impulszahl.			
[Range] FLOW_OVERLOAD_WARNING	Der Durchfluss hat den Skalenendwert von mehr als 100% überschritten.	Stellen Sie den Durchflussbereich richtig ein.			
[LowPow] LOW_POWER_WARNING	Die Batteriespannung ist niedriger als 3,0 V.	Die Batterie ggf. ersetzen.			
[EEPROM] EEPROM_ERROR	Die Konfigurationsdatei fehlt.	Platine ersetzen.			
[Config] CONFIG_ERROR	Die Konfigurationsdatei ist beschädigt.	Platine ersetzen.			
[Preamp] PREAMPLIFIER_OVERLOAD	Die Eingangsspannung hat die Grenzwerte überschritten.	Die maximale Polarisation beträgt ± 227 mV; das maximale Leitungsrauschen beträgt 10,6 mV; das maximale Nutzsignal beträgt 10,7 mV.			
	Verschmutzte Elektroden.	Reinigen Sie die Elektroden.			
[Coil]	Spule/Sensor ist nicht angeschlossen.	Sicherstellen, dass die Kabel richtig mit dem			
COIL ERROR	Spule kurzgeschlossen.	Verstärker verbunden sind.			
	Problem mit dem Spulenstrom.	Wenn der Alarm dadurch nicht behoben wird, wenden Sie sich an den technischen Kundendienst von Badger Meter.			
[Partial] Partial_Filled_ERROR	Die Funktion "Leerrohr" ist deaktiviert und das Messrohr ist nur teilweise gefüllt.	Funktion "Leerrohrerkennung" aktivieren oder			
	Elektroden sind nicht mehr mit Flüssigkeit bedeckt oder es fehlt die Signalreferenz.	Stellen Sie sicher, dass das Rohr vollständig gefüllt ist.			

HINWEIS: Wenn einer dieser Fehler auftritt, unterbricht das Messgerät die Messung, bis der Fehler behoben ist. Danach setzt das

Messgerät die Messung fort.

HINWEIS: COIL_ERROR und EMPTY PIPE WARNING

Fehlerbehebung

Trennen Sie alle Geräte von der Stromversorgung und lassen Sie sie von einem qualifizierten Servicetechniker reparieren, wenn einer der folgenden Fälle eintritt:

- Das Netzkabel oder der Stecker ist beschädigt oder verschlissen.
- Das Gerät funktioniert nicht normal, obwohl die Betriebsanweisungen befolgt werden.
- Das Gerät ist Regen/Wasser ausgesetzt oder es ist Flüssigkeit hineingelangt.
- Das Gerät wurde fallen gelassen oder beschädigt.
- Eine Leistungsveränderung des Geräts weist auf einen Servicebedarf hin.

ANSCHLIESSEN EINES ORION RTR®-ENDPUNKTS AN DAS M5000-MESSGERÄT

HINWEIS: Schließen Sie den Endpunkt wie beschrieben an. Wenn ein Messwert auf dem M5000 vorhanden ist, den Endpunkt so programmieren, dass er mit diesem Messwert übereinstimmt, oder den Zähler zurücksetzen. Der Endpunkt muss gemäß der Bedienungsanleitung des Endpunkts programmiert werden.

Verkabelung

Für den Anschluss des RTR-Endpunkts an Ausgang Nr. 1 des M5000, das rote Kabel mit dem positiven (+) Anschluss und das schwarze-grüne Kabel mit dem negativen (–) Anschluss verbinden.

Für den Anschluss des RTR-Endpunkts an Ausgang Nr. 2 des M5000, das rote Kabel mit dem positiven (+) Anschluss und das schwarze-grüne Kabel mit dem negativen (–) Anschluss verbinden.

Programmierung

Das M5000-Messgerät wird für den Endpunkt zu Ausgang Nr. 1 (Vorwärtsfluss) wie folgt programmiert:

- 1. Gehen Sie zu IN/OUT (EIN-/AUSGANG) > Simula 🍇 imulation) > Outputs (Ausgange) > Puls, -inheit).
- 2. Zum Ändern der Werte die Pfeile verwenden, (and EXIT'S AVE delicken
- 3. Die Schritte 1 und 2 für *Breite, Out 1 Func und* C by 1 *Type* wiederholen. (ITRON, ROT) **HINWEIS:** Für Ausgang Nr. 2 (Vorwärtsfluss) stat by essen *Out 2 Func* und *Out 2 Tvpe* verwenden (ITRON, WEISS)

ROT_UHR (ITRON, SCHWARZ)

GRÜN_DATEN

(ITRON, ROT)

SCHWARZ_MASSE (ITRON, WEISS)

ANSCHLUSS EINES ORION ENCODER-ENDPUNKTS AN DAS M5000-MESSGERÄT

HINWEIS: Sobald die Verbindung hergestellt ist, wird der Endpunkt automatisch innerhalb einer Stunde aktualisiert. Sie können eine Aktualisierung auch mit der Endpoint-Utility-Software erzwingen. Informationen zur Programmierung finden Sie im Benutzerhandbuch "ORION Endpoint Utility", das unter www.badgermeter.com verfügbar ist.

Verkabelung

Verbinden Sie den Encoder-Endpunkt mit dem Messgerät:

M5000-Klemme
Eingang +
Ausgang 4 +
Ausgang 4 –

Verbinden Sie einen Schaltdraht von Ausgang 4 negativ (-) mit EINGANG negativ (-).

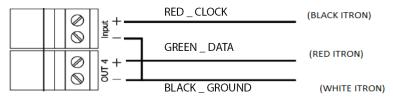


Abbildung 38: M5000-Endpunktverbindung

Hinzufügen eines Widerstands mit ORION Cellular LTE

Beim Anschluss an einen ORION Cellular LTE-Endpunkt ist ein zusätzlicher Widerstand erforderlich. Fügen Sie an der M5000-Klemmleiste zwischen Eingang + (roter Draht) und Ausgang 4 + (grüner Draht) einen 15K-Widerstand hinzu (siehe Abbildung). Der Widerstand ist in Abbildung 38 in rot dargestellt.

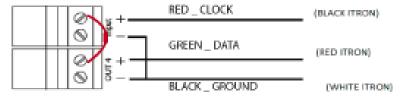


Abbildung 39: ORION Cellular LTE-Endpunktverbindung mit Widerstand

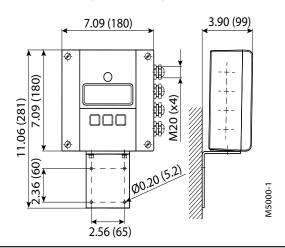
Bestellen Sie das Widerstandskit P/N 69224-001 von Badger Meter.

Programmierung

Die Änderung der folgenden Einstellungen konfiguriert automatisch den Eingang und Ausgang 4 für ADE.

Das M5000-Messgerät wird für den Endpunkt zum Ausgang Nr. 1 (Vorwärtsfluss) wie folgt programmiert:

- 1. Navigieren Sie zu COMMUNIC (KOMMUNIKATION) > INTERFAC (SCHNITTSTELLE) > ADE (ADE) > CONTROL (KONTROLLE).
- 2. Zum Ändern der Werte die Pfeile verwenden, danach **EXIT/SAVE** drücken.
- 3. Wiederholen Sie die Schritte 1 und 2 für Control (Steuerung), Protocol (Protokoll), Dials (Dials) und Resolution (Auflösung) (der Auflösungsbereich ist 0,0001...10.000).
- 4. Drücken Sie EXIT/SAVE.


TECHNISCHE DATEN

HINWEIS: Die Angaben in DN beziehen sich auf den Nenndurchmesser in mm.

M5000-Verstärker

Durchflussbereich	0,132,8 ft/s (0,0310 m/s)								
Genauigkeit	± 0.4 % yom Messwert ± 2 mm/s								
Genauigkeit	OIML/MID: 224 ZoII (DN50600) mit 0d aufwärts und 0d abwärts ±1 % ≥ 1,2 ft/s (0,35 m/s)								
Reproduzierbarkeit	± 0,1 %								
Umgebungstemperatur	-4140° F (-2060° C)								
Durchflussrichtung	Unidirektional oder bidirektional. Zwei separate programmierbare Zähler zur unidirektionalen Messung.								
Digitale Ausgänge (4)	Galvanisch getrennter offener Kollektor, max. 30 V DC, jeweils 20 mA, max. Ausgangsfrequenz 100 Hz								
	Absolute-Digital-Encoder-Ausgang zum Anschluss an AquaCUE- oder BEACON-Mobilfunkendpunkte								
Statusausgänge	ADE, min./max. Durchflussalarm (0100 % des Durchflusses), Fehleralarm, Leerrohralarm, Durchflussrichtung								
Kommunikation	RS232, Modbus RTU, IrDA, M-Bus, RS 485 (optional), externes AMR- oder GSM/GPRS-Modul (optional)								
Leerrohrerkennung	Separate Elektrode, vor Ort abstimmbar für optimale Leistung je nach spezifischer Anwendung								
Min/Max-Durchflussalarm	Programmierbare Ausgänge 0100 % des Durchflusses								
Abschaltung bei	Programmierbar 010 % des max. Durchflusses								
niedrigem Durchfluss									
Galvanische Trennung	Funktional 500 Volt								
Impulsbreite	Programmierbar 5500 ms								
Spulenleistung	Mischstrom								
Abtastrate	Programmierbar von 1 bis 63 Sekunden. Die Abtastperiode beträgt standardmäßig 15 Sekunden.								
Anzeige	Zwei Zeilen x 15 Zeichen (7 oben + 8 unten), LCD-Display								
Programmierung	Drei externe Tasten								
Maßeinheiten	Gallonen, Unzen, MGD, Liter, Kubikmeter, Kubikfuß, Imperial Gallon, Barrel, Hektoliter und Acre-Fuß								
Batterielebensdauer	Standard: 10 Jahre mit einem Batteriesatz; optional: bis zu 20 Jahre mit zwei Batteriesätzen für Größen von 6 Zoll (DN 150) oder weniger.								
Stromversorgung	Standard: Interne Lithium-Batterien 3,6 Volt, optional externer Batteriesatz Optional: Pufferbatterie-Modell (100240 V AC oder 936 V DC)								
Verarbeitung	Mikrocontroller mit geringem Stromverbrauch (16 Bit)								
Verstärkergehäuse	NEMA 4X (IP67, optional IP68), Aluminiumguss, Pulverlackierung								
Installation	Detektormontage oder abgesetzte Wandmontage (Halterung wird mitgeliefert)								
Klassifizierung des Messgerätegehäuses	Standard: NEMA 4X (IP67); optional: Tauchfähiger NEMA 6P IP68, Fernverstärker erforderlich								
Verteilerkasten Schutzgehäuse	Für die Option "Fernverstärker": Pulverbeschichteter Aluminiumdruckguss, NEMA 4 (IP67)								
Zulassungen	NSF/ANSI/CAN 61 und 372 gelistet Modelle mit Hartgummiauskleidung ab DN 100 (4 Zoll); PTFE-Auskleidung für alle Größen.								
	OIML R49-1								
	MID MI-001								
	AWWA C715								
	WRAS (Hartgummi)								
	ACS (PTFE)								
	KTW (PTFE)								
	MCERT								

Abmessungen des M5000-Verstärkers in Zoll (Millimeter)

Detektor Typ VI

Größe	1/224 Zoll (DN 1	1/224 Zoll (DN 15600)									
Prozessanschluss	Flanschtyp DII	Flanschtyp DIN, ANSI, JIS, AWWA und mehr									
Prozessanschiuss	Material Standard: Kohlenstoffstahl; optional: Edelstahl 304/316										
Druckgrenzwerte	Bis 1450 psi (100 bar) PED										
Klassifizierung des Messgerätegehäuses	Standard: NEMA 4X	Standard: NEMA 4X (IP67); Option: Tauchfähiger NEMA 6P IP68, Fernverstärker erforderlich									
Mindestleitfähigkeit	≥20 µS/cm	≥20 μS/cm									
Auskleidungen	Material	Verfügbar für die Größen	Flüssigl	Flüssigkeitstemperatur für							
			externe	Montage	Messgerät-Montage						
	PTFE	1/224 Zoll (DN 15600)	302° F (150° C)	212° F (100° C)						
	Hartgummi	124 Zoll (DN 25600)	178° F (8	80° C)	178° F (80° C)						
	ETFE	1224 Zoll (DN 300600)	302° F (150° C)	212° F (100° C)						
Elektrodenmaterialien	Standard: Hastelloy	y® C; optional: Tantal, platiniert,	vergolde	et, Platin/Rhodium, Edelst	ahl 316						
Material des Messgeräts	Standard: lackierte	r Kohlenstoffstahl; optional: Ed	lelstahl 3	04/316 oder mit C5M lacl	kiert						
Optionale Erdungsringe aus	ANSI-Flansche										
Edelstahl	Größe des Messger	räts Dicke (1 Ring)	Dicke (1 Ring)		Dicke (1 Ring)						
	Bis 10 Zoll 1224 Zoll	0,135 Zoll (3,42 r 0,187 Zoll (4,75 r	,	1/224 Zoll	0,12 Zoll (3 mm)						

Abgesetzte Version Montierte Version Zoll (mm) Zoll (mm) 3.90 (99) 7.09 (180) 7.09 (180) 3.27 (83) 11.06 (281) 0 7.09 (180) 000 M20 (x4) 00.20 (5.2) **B**2 2.56 (65) 4.80 (122) 3.15 (80) **III**

Flansch, ANSI-Klasse 150 ASME B16.5

Größ	Größe DN Standard A		lard A	ISC) A*	В	1	B2		D		К		d2 x n	
Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm
1/2	15	6,7	170	7,9	200	9,4	238	11,7	298	3,5	89	2,4	61	0,6 x 4	16 x 4
3/4	20	6,7	170	7,9	200	9,4	238	11,7	298	3,9	99	2,8	71	0,6 x 4	16 x 4
1	25	8,9	225	7,9	200	9,4	238	11,7	298	4,3	109	3,1	79	0,6 x 4	16 x 4
1-1/4	32	8,9	225	7,9	200	10,0	253	12,3	313	4,6	117	3,5	89	0,6 x 4	16 x 4
1-1/2	40	8,9	225	7,9	200	10,0	253	12,3	313	5,0	127	3,9	99	0,6 x 4	16 x 4
2	50	8,9	225	7,9	200	10,0	253	12,3	313	6,0	152	4,8	122	0,8 x 4	19 x 4
2-1/2	65	11,0	280	7,9	200	10,7	271	13,0	331	7,0	178	5,5	140	0,8 x 4	19 x 4
3	80	11,0	280	7,9	200	10,7	271	13,0	331	7,5	191	6,0	152	0,8 x 4	19 x 4
4	100	11,0	280	9,8	250	10,9	278	13,3	338	9,0	229	7,5	191	0,8 x 8	19 x 8
5	125	15,7	400	9,8	250	11,7	298	14,1	358	10,0	254	8,5	216	0,9 x 8	22 x 8
6	150	15,7	400	11,8	300	12,2	310	14,6	370	11,0	279	9,5	241	0,9 x 8	22 x 8
8	200	15,7	400	13,8	350	13,3	338	15,7	398	13,5	343	11,8	300	0,9 x 8	22 x 8
10	250	19,7	500	17,7	450	14,3	362	16,6	422	16,0	406	14,3	363	1,0 x 12	25 x 12
12	300	19,7	500	19,7	500	16,7	425	19,1	485	19,0	483	17,0	432	1,0 x 12	25 x 12
14	350	19,7	500	21,7	550	17,7	450	20,1	510	21,0	533	18,8	478	1,1 x 12	28 x 12
16	400	23,6	600	23,6	600	18,7	475	21,1	535	23,5	597	21,3	541	1,1 x 16	28 x 16
18	450	23,6	600	23,6	600	19,7	500	22,0	560	25,0	635	22,8	579	1,3 x 16	32 x 16
20	500	23,6	600	23,6	600	20,7	525	23,0	585	27,5	699	25,0	635	1,3 x 20	32 x 20
24	600	23,6	600	23,6	600	23,1	588	25,5	648	32,0	813	29,5	749	1,4 x 20	35 x 20
						And	lere Größe	n auf Anfi	rage						

WICHTIG: ISO* Sensorschlaglänge nach ISO 20456

Flansch, ANSI-Klasse 300 ASME B16.5

Größ	le DN	Stand	Standard A		SO A* B1		1	В	2	[)	K		d2	x n
Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm
1/2	15	6,7	170	7,9	200	9,4	238	11,7	298	3,8	95	2,6	67	0,6 x 4	16 x 4
3/4	20	6,7	170	7,9	200	9,4	238	11,7	298	4,6	117	3,3	83	0,8 x 4	19 x 4
1	25	8,9	225	7,9	200	9,4	238	11,7	298	4,9	124	3,5	89	0,8 x 4	19 x 4
1-1/4	32	8,9	225	7,9	200	10,0	253	12,3	313	5,3	133	3,9	99	0,8 x 4	19 x 4
1-1/2	40	8,9	225	7,9	200	10,0	253	12,3	313	6,1	155	4,5	114	0,9 x 4	22 x 4
2	50	8,9	225	7,9	200	10,0	253	12,3	313	6,5	165	5,0	127	0,8 x 8	19 x 8
2-1/2	65	11,0	280	7,9	200	10,7	271	13,0	331	7,5	191	5,9	149	0,9 x 8	22 x 8
3	80	11,0	280	7,9	200	10,7	271	13,0	331	8,3	210	6,6	168	0,9 x 8	22 x 8
4	100	11,0	280	9,8	250	10,9	278	13,3	338	10,0	254	7,9	200	0,9 x 8	22 x 8
5	125	15,7	400	9,8	250	11,7	298	14,1	358	11,0	279	9,3	235	0,9 x 8	22 x 8
6	150	15,7	400	11,8	300	12,2	310	14,6	370	12,5	318	10,6	270	0,9 x 12	22 x 12
8	200	15,7	400	13,8	350	13,3	338	15,7	398	15,0	381	13,0	330	1,0 x 12	25 x 12
10	250	19,7	500	17,7	450	14,3	362	16,6	422	17,5	445	15,3	387	1,1 x 16	28 x 16
12	300	19,7	500	19,7	500	16,7	425	19,1	485	20,5	521	17,8	451	1,3 x 16	32 x 16
14	350	19,7	500	21,7	550	17,7	450	20,1	510	23,0	584	20,3	514	1,3 x 20	32 x 20
16	400	23,6	600	23,6	600	18,7	475	21,1	535	25,5	648	22,5	572	1,4 x 20	35 x 20
18	450	23,6	600	23,6	600	19,7	500	22,0	560	28,0	711	24,8	629	1,4 x 24	35 x 24
20	500	23,6	600	23,6	600	20,7	525	23,0	585	30,5	775	27,0	686	1,4 x 24	35 x 24
24	600	23,6	600	23,6	600	23,1	588	25,5	648	36,0	914	32,0	813	1,6 x 24	41 x 24
						And	lere Größe	n auf Anf	rage						

WICHTIG: ISO* Sensorschlaglänge nach ISO 20456

Flansch EN 1092-1/PN 10

Größ	Größe DN Standard A		lard A	ISO A*		B1		B2		D		ŀ	(d2 x n	
Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm
8	200	15,7	400	13,8	350	13,3	338	15,7	398	13,4	340	11,6	295	0,9 x 8	22 x 8
10	250	19,7	500	17,7	450	14,3	362	16,6	422	15,6	395	13,8	350	0,9 x 12	22 x 12
12	300	19,7	500	19,7	500	16,7	425	19,1	485	17,5	445	15,7	400	0,9 x 12	22 x 12
14	350	19,7	500	21,7	550	17,7	450	20,1	510	19,9	505	18,1	460	0,9 x 16	22 x 16
16	400	23,6	600	23,6	600	18,7	475	21,1	535	22,2	565	20,3	515	1,0 x 16	26 x 16
18	450	23,6	600	23,6	600	19,7	500	22,0	560	24,2	615	22,2	565	1,0 x 20	26 x 20
20	500	23,6	600	23,6	600	20,7	525	23,0	585	26,4	670	24,4	620	1,0 x 20	26 x 20
24	600	23,6	600	23,6	600	23,1	588	25,5	648	30,7	780	28,5	725	1,2 x 20	30 x 20
	Andere Größen auf Anfrage														

WICHTIG: ISO* Sensorschlaglänge nach ISO 20456

Flansch EN 1092-1/PN 16

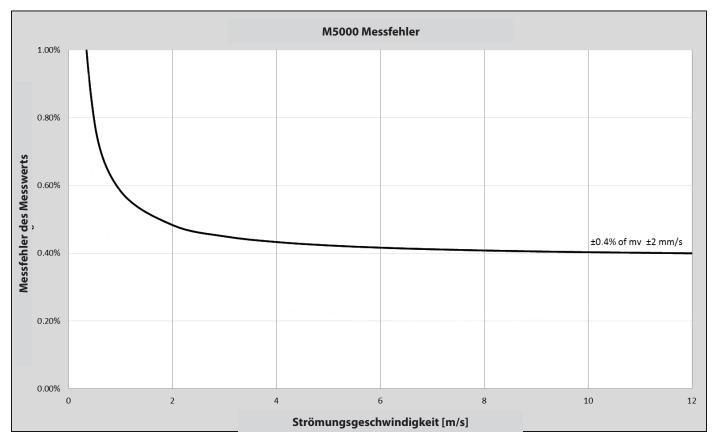
Größ	Be DN	Stand	lard A	ISC) A*	В	31	В	2	[)	ı	(d2	x n
Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm
1/2	15	6,7	170	7,9	200	9,4	238	11,7	298	3,7	95	2,6	65	0,6 x 4	14 x 4
3/4	20	6,7	170	7,9	200	9,4	238	11,7	298	4,1	105	3,0	75	0,6 x 4	14 x 4
1	25	8,9	225	7,9	200	9,4	238	11,7	298	4,5	115	3,3	85	0,6 x 4	14 x 4
1-1/4	32	8,9	225	7,9	200	10,0	253	12,3	313	5,5	140	3,9	100	0,7 x 4	18 x 4
1-1/2	40	8,9	225	7,9	200	10,0	253	12,3	313	5,9	150	4,3	110	0,7 x 4	18 x 4
2	50	8,9	225	7,9	200	10,0	253	12,3	313	6,5	165	4,9	125	0,7 x 4	18 x 4
2-1/2	65	11,0	280	7,9	200	10,7	271	13,0	331	7,3	185	5,7	145	0,7 x 8	18 x 8
3	80	11,0	280	7,9	200	10,7	271	13,0	331	7,9	200	6,3	160	0,7 x 8	18 x 8
4	100	11,0	280	9,8	250	10,9	278	13,3	338	8,7	220	7,1	180	0,7 x 8	18 x 8
5	125	15,7	400	9,8	250	11,7	298	14,1	358	9,8	250	8,3	210	0,7 x 8	18 x 8
6	150	15,7	400	11,8	300	12,2	310	14,6	370	11,2	285	9,4	240	0,9 x 8	22 x 8
8	200	15,7	400	13,8	350	13,3	338	15,7	398	13,4	340	11,6	295	0,9 x 12	22 x 12
10	250	19,7	500	17,7	450	14,3	362	16,6	422	15,9	405	14,0	355	1,0 x 12	26 x 12
12	300	19,7	500	19,7	500	16,7	425	19,1	485	18,1	460	16,1	410	1,0 x 12	26 x 12
14	350	19,7	500	21,7	550	17,7	450	20,1	510	20,5	520	18,5	470	1,0 x 16	26 x 16
16	400	23,6	600	23,6	600	18,7	475	21,1	535	22,8	580	20,7	525	1,2 x 16	30 x 16
18	450	23,6	600	23,6	600	19,7	500	22,0	560	25,2	640	23,0	585	1,2 x 20	30 x 20
20	500	23,6	600	23,6	600	20,7	525	23,0	585	28,1	715	25,6	650	1,3 x 20	33 x 20
24	600	23,6	600	23,6	600	23,1	588	25,5	648	33,1	840	30,3	770	1,4 x 20	36 x 20
						Anc	dere Größe	en auf Anf	rage						

WICHTIG: ISO* Sensorschlaglänge nach ISO 20456

Flansch EN 1092-1/PN 25

Größ	e DN	Stand	lard A	ISC) A*	В	31	В	2)	I	K	d2	x n
Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm
1/2	15	6,7	170	7,9	200	9,4	238	11,7	298	3,7	95	2,6	65	0,6 x 4	14 x 4
3/4	20	6,7	170	7,9	200	9,4	238	11,7	298	4,1	105	3,0	75	0,6 x 4	14 x 4
1	25	8,9	225	7,9	200	9,4	238	11,7	298	4,5	115	3,3	85	0,6 x 4	14 x 4
1-1/4	32	8,9	225	7,9	200	10,0	253	12,3	313	5,5	140	3,9	100	0,7 x 4	18 x 4
1-1/2	40	8,9	225	7,9	200	10,0	253	12,3	313	5,9	150	4,3	110	0,7 x 4	18 x 4
2	50	8,9	225	7,9	200	10,0	253	12,3	313	6,5	165	4,9	125	0,7 x 4	18 x 4
2-1/2	65	11,0	280	7,9	200	10,7	271	13,0	331	7,3	185	5,7	145	0,7 x 4	18 x 8
3	80	11,0	280	7,9	200	10,7	271	13,0	331	7,9	200	6,3	160	0,7 x 8	18 x 8
4	100	11,0	280	9,8	250	10,9	278	13,3	338	9,3	235	7,5	190	0,9 x 8	22 x 8
5	125	15,7	400	9,8	250	11,7	298	14,1	358	10,6	270	8,7	220	1,0 x 8	26 x 8
6	150	15,7	400	11,8	300	12,2	310	14,6	370	11,8	300	9,8	250	1,0 x 8	26 x 8
8	200	15,7	400	13,8	350	13,3	338	15,7	398	14,2	360	12,2	310	1,0 x 8	26 x 12
10	250	19,7	500	17,7	450	14,3	362	16,6	422	16,7	425	14,6	370	1,2 x 12	30 x 12
12	300	19,7	500	19,7	500	16,7	425	19,1	485	19,1	485	16,9	430	1,2 x 12	30 x 16
14	350	19,7	500	21,7	550	17,7	450	20,1	510	21,9	555	19,3	490	1,3 x 16	33 x 16
16	400	23,6	600	23,6	600	18,7	475	21,1	535	24,4	620	21,7	550	1,4 x 16	36 x 16
18	450	23,6	600	23,6	600	19,7	500	22,0	560	26,4	670	23,6	600	1,4 x 20	36 x 20
20	500	23,6	600	23,6	600	20,7	525	23,0	585	28,7	730	26,0	660	1,4 x 20	36 x 20
24	600	23,6	600	23,6	600	23,1	588	25,5	648	33,3	845	30,3	770	1,5 x 20	39 x 20
						And	dere Größe	en auf Anf	rage						

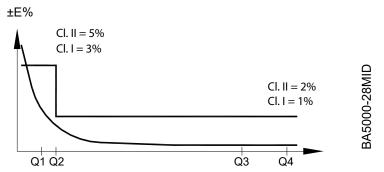
WICHTIG: ISO* Sensorschlaglänge nach ISO 20456


Flansch EN 1092-1/PN 40

Größ	e DN	Stand	lard A	ISO	A*	В	1	В	2	[)	I	K	d2	x n
Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm	Zoll	mm
1/2	15	6,7	170	7,9	200	9,4	238	11,7	298	3,7	95	2,6	65	0,6 x 4	14 x 4
3/4	20	6,7	170	7,9	200	9,4	238	11,7	298	4,1	105	3,0	75	0,6 x 4	14 x 4
1	25	8,9	225	7,9	200	9,4	238	11,7	298	4,5	115	3,3	85	0,6 x 4	14 x 4
1-1/4	32	8,9	225	7,9	200	10,0	253	12,3	313	5,5	140	3,9	100	0,7 x 4	18 x 4
1-1/2	40	8,9	225	7,9	200	10,0	253	12,3	313	5,9	150	4,3	110	0,7 x 4	18 x 4
2	50	8,9	225	7,9	200	10,0	253	12,3	313	6,5	165	4,9	125	0,7 x 4	18 x 4
2-1/2	65	11,0	280	7,9	200	10,7	271	13,0	331	7,3	185	5,7	145	0,7 x 4	18 x 8
3	80	11,0	280	7,9	200	10,7	271	13,0	331	7,9	200	6,3	160	0,7 x 8	18 x 8
4	100	11,0	280	9,8	250	10,9	278	13,3	338	9,3	235	7,5	190	0,9 x 8	22 x 8
5	125	15,7	400	9,8	250	11,7	298	14,1	358	10,6	270	8,7	220	1,0 x 8	26 x 8
6	150	15,7	400	11,8	300	12,2	310	14,6	370	11,8	300	9,8	250	1,0 x 8	26 x 8
8	200	15,7	400	13,8	350	13,3	338	15,7	398	14,8	375	12,6	320	1,2 x 8	30 x 12
10	250	19,7	500	17,7	450	14,3	362	16,6	422	17,7	450	15,2	385	1,3 x 12	33 x 12
12	300	19,7	500	19,7	500	16,7	425	19,1	485	20,3	515	17,7	450	1,3 x 12	33 x 16
14	350	19,7	500	21,7	550	17,7	450	20,1	510	22,8	580	20,1	510	1,4 x 16	36 x 16
16	400	23,6	600	23,6	600	18,7	475	21,1	535	26,0	660	23,0	585	1,5 x 16	39 x 16
18	450	23,6	600	23,6	600	19,7	500	22,0	560	27,0	685	24,0	610	1,5 x 20	39 x 20
20	500	23,6	600	23,6	600	20,7	525	23,0	585	29,7	755	26,4	670	17 v 20	47 × 20
24												werts 20			
						Anc	lere Größe	n auf Anf	rage					±2 mm/s	

WICHTIG: ISO* Sensorschlaglänge nach ISO 20456

Fehlergrenzen

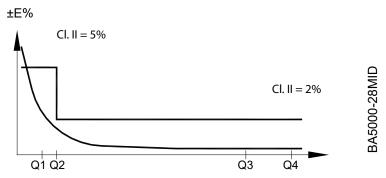

Messbereich	0,1039,37 ft/s (0,0312 m/s)
Impulsausgang	±0,4 % des Messwerts ±0,08 Zoll/Sek (2 mm/s)
Reproduzierbarkeit	±0,1 % der Ist-Daten

Referenzbedingungen	
Umgebungs- und	68° F (20° C)
Flüssigkeitstemperatur	08 F (20 C)
El. Leitfähigkeit	> 300 μS/cm
Warmlaufphase	60 min
	> (10 DN) Zuleitung
Einbaubedingungen	> (5 DN) Abflussrohr
	Detektor ordnungsgemäß geerdet und zentriert

MESSGERÄT MIT OIML-ZULASSUNG

Der M5000 ist nach der internationalen Wasserzählernorm OIML R49 baumustergeprüft. Das Messgerät ist als Klasse I und Klasse II für die Detektorgrößen 2...24 Zoll (DN 50...600) zugelassen.

Q2/Q1 = 1,6 und Q4/Q3 = 1,25OIML R 49 Spezifikation für Klasse I

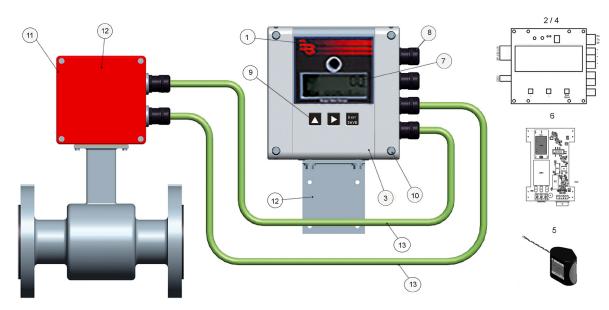

C 0 1	BA		Durchflussm	engen [m³/h]		V			
Große des	Messgeräts	Q1	Q2	Q3	Q4	Verhältnis Q3/Q1			
DN 50	2 Zoll	0,315	0,504	63	78,75	200			
DN 65	2-1/2 Zoll	0,5	0,8	100	125	200			
DN 80	3 Zoll	0,8	1,28	160	200	200			
DN 100	4 Zoll	1	1,6	250	312,5	250			
DN 125	5 Zoll	1,6	2,56	400	500	250			
DN 150	6 Zoll	3,9375	6,3	630	787,5	160			
DN 200	8 Zoll	6,25	10	1000	1250	160			
DN 250	10 Zoll	10	16	1600	2000	160			
DN 300	12 Zoll	15,625	25	2500	3125	160			
DN 350	14 Zoll	15,625	25	2500	3125	160			
DN 400	16 Zoll	25	40	4000	5000	160			
DN 450	18 Zoll	39,375	63	6300	7875	160			
DN 500	20 Zoll	39,375	63	6300	7875	160			
DN 600	24 Zoll	50,4	80,64	6300	7875	125			
OIML R49	Klasse I								

OIML R 49 Spezifikation für Klasse II

Cui Co dos	Massasita		Durchflussm	engen [m³/h]		Varb #Itmia 02/01			
Große des	Messgeräts	Q1	Q2	Q3	Q4	Verhältnis Q3/Q1			
DN 50	2 Zoll	0,315	0,504	63	78,75	200			
DN 65	2-1/2 Zoll	0,5	0,8	100	125	200			
DN 80	3 Zoll	0,8	1,28	160	200	200			
DN 100	4 Zoll	1	1,6	250	312,5	250			
DN 125	5 Zoll	1,6	2,56	400	500	250			
DN 150	6 Zoll	2,52	4,032	630	787,5	250			
DN 200	8 Zoll	6,4	10,24	1600	2000	250			
DN 250	10 Zoll	6,4	10,24	1600	2000	250			
DN 300	12 Zoll	10	16	2500	3125	250			
DN 350	14 Zoll	10	16	2500	3125	250			
DN 400	16 Zoll	16	25,6	4000	5000	250			
DN 450	18 Zoll	25,2	40,32	6300	7875	250			
DN 500	20 Zoll	25,2	40,32	6300	7875	250			
DN 600	24 Zoll	40	64	10.000	12.500	250			
OIML R49		Klasse II							

MESSGERÄT MIT MID-ZULASSUNG (MI-001)

Das M5000 ist baumustergeprüft gemäß Richtlinie 2004/22/EG des Europäischen Parlaments und des Rates vom 31. März 2004 über Messgeräte (MID), Anhang MI-001. Das Messgerät ist für die Detektorgrößen 2...24 Zoll (DN 50...600) zugelassen.



Q2/Q1 = 1.6 und Q4/Q3 = 1.25

Cui On don	Massassita		Durchflussmengen [m³/h]						
Große des	Messgeräts	Q1	Q2	Q3	Q4	Verhältnis Q3/Q1			
DN 50	2 Zoll	0,315	0,504	63	78,75	200			
DN 65	2-1/2 Zoll	0,5	0,8	100	125	200			
DN 80	3 Zoll	0,8	1,28	160	200	200			
DN 100	4 Zoll	1	1,6	250	312,5	250			
DN 125	5 Zoll	1,6	2,56	400	500	250			
DN 150	6 Zoll	2,52	4,032	630	787,5	250			
DN 200	8 Zoll	6,4	10,24	1600	2000	250			
DN 250	10 Zoll	6,4	10,24	1600	2000	250			
DN 300	12 Zoll	10	16	2500	3125	250			
DN 350	14 Zoll	10	16	2500	3125	250			
DN 400	16 Zoll	16	25,6	4000	5000	250			
DN 450	18 Zoll	25,2	40,32	6300	7875	250			
DN 500	20 Zoll	25,2	40,32	6300	7875	250			
DN 600	24 Zoll	40	64	10.000	12.500	250			
MID MI-001									

ERSATZTEILE

LEERSEITE

HINWEIS: Für Fernanwendungen sind zwei Kabel erforderlich: Ein Elektrodenkabel und ein Spulenkabel.

Pos.	Beschreibung			Artikel-Nr. Nordamerika	Artikel-Nr. International			
	Verstärker-Baugruppe,	komplett						
1	Komplett ohne Batterie	en		_	592603			
1	Komplett mit 2 D-Zeller	n		66902-003	592600			
	Komplett mit 4 D-Zeller	n		66902-004	592601			
2	Platinenbaugruppe mit	t Verstärkerabdeckung, <i>F</i>	ADE und M-Bus	66902-007	384748			
2	Platinenbaugruppe mit	t Verstärkerabdeckung u	nd RS485	66902-008	384759			
3	Gehäuse / Deckel (kom	plett)		66902-002	384735			
4	LCD-Anzeige (nur mit P	Platine erhältlich)						
_	Batteriepack, 2 D-Zeller	n		66902-006	384776			
5	Batteriepack, 4 D-Zeller	n		66902-005	384777			
	Pufferbatterie-Platine A	AC		_	384701			
6	Pufferbatterie-Platine D	OC .		_	384741			
7	Anzeigefenster			_	384709			
8	Kabelverschraubung			66862-001	384732			
9	Tastensatz, schwarz			_	384707			
10	Gehäuseschrauben / Ku	ugelgewindetriebe (4 Sti	ück)	66312-001	384607			
11	IP68-Bausatz für die ab	gesetzte Version		_	383077			
12	Fernmontagesatz ohne	Kabel		63384-043	384870			
	Fernmontagesatz mit K	Cabel						
		Nordamerika		International				
		Elektrodenkabel	Spulenkabel	5 m	384871			
13	A-Kabel: 15 Fuß	66897-001	66896-001	10 m	384872			
13	B-Kabel: 30 Fuß	66897-002	66896-002	15 m	384873			
	C-Kabel: 50 Fuß	66897-003	66896-003	20 m	384874			
	D-Kabel: 100 Fuß	66897-004	66896-004	25 m	384875			
		_		30 m	384876			
	Datenaufzeichnungskit	t (erforderlich für Firmwa	67354-008	_				
	Verification Device		66849-001	_				
	PC-Programmierkit übe	er USB/RS232	_	592604				
	PC-Programmierkit übe		_	592605				
		ifische Größen finden Si wenden Sie sich an Ihre		63528-xxx	_			

Badger Meter Europa GmbH Subsidiary of Badger Meter, Inc.

Vertrieb durch:
H. Hermann Ehlers GmbH
An der Autobahn 45
28876 Oyten
https://www.ehlersgmbh.com

Verkauf@EhlersGmbH.de

Kontrollieren. Verwalten. Optimieren.

ModMAG und ORION sind eingetragene Warenzeichen von Badger Meter, Inc. Andere Warenzeichen in diesem Dokument sind Eigentum der zugehörigen Rechtspersonen. Aufgrund fortlaufender Forschung, Produktverbesserungen und -erweiterungen behält sich Badger Meter das Recht auf Änderungen von Produkt- und technischen Systemdaten ohne Ankündigung vor, sofern dem keine vertraglichen Verpflichtungen entgegenstehen. © 2024 Badger Meter, Inc. Alle Rechte vorbehalten.