H. HERMANN EHLERS GMBH

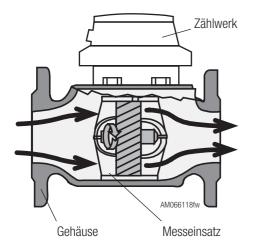
Fördern - Messen - Regeln - Dosieren - Verdichten Ingenieurbüro - Werksvertretungen

RUBIN Warmwasser

Anwendung

Die Baureihe RUBIN arbeitet nach dem Geschwindigkeits-Messprinzip mit Woltman-Turbine und ist für die Grosswassermessung konzipiert. Das komplette und modulare Sortiment deckt einen breiten Messbereich auf allen Gebieten der Wasserversorgungstechnik als Durchflussmesser oder Durchflusssensor für Komplettmessstellen.

Merkmale


- Hohe Überlastbarkeit
- Symmetrische Regulierung für hohe Genauigkeit in beiden Durchflussrichtungen (Option)
- Zählwerk IP 68 (überflutungssicher)
- Der durch die spezielle Geometrie des WPDHs erzeugte Staugegendruck verhilft zu einer schwebenden und damit reibungsarmen Turbinenlagerung.

Kundennutzen

- Zählwerk für beste Ableseposition um 360° drehbar
- Wahl zwischen lokaler Anzeige und/oder zusätzlicher Fernanzeige
- Das hermetisch gekapselte Rollenzählwerk ist mit bis zu 3 Impulsgebern ohne Verletzung der Plomben nachrüstbar.
- Auswechselbare und beglaubigungsfähige Messeinsätze

Bauweise

RUBIN WPDH

Bezeichnung	Material				
Baugruppe Gehäuse					
Gehäuse	GG 25				
Messeinsatzschrauben	rostfreier Stahl				
Baugruppe Messeinsatz					
Flügelrad kpl.					
Flügelrad	PPS				
Deckstein	Saphir				
Lagerbuchse für Flügelrad	PPS				
 Regulierung kpl.					
Regulierring	PPS				
Schubstange	rostfreier Stahl				
Regulierbolzen	Messing				
O-Ring für Regulierbolzen	EPDM				
Konterschraube	Messing				
Messeinsatz-Körper kpl.					
Kopfdichtung	EPDM				
Deckelflansch	Messing verzinnt				
Einsatzgrundkörper	PPS				
Formdichtung	EPDM				
Schutzrohr	PPS				
Lagerstift	rostfreier Stahl PPS				
Lagerbuchse für Übertragungswelle Übertragungswelle	PPS/rostfreier Stahl				
Zahnrad für Übertragungswelle	PPS				
Magnetkupplung	PPS/Hartferrit				
Wasserführungskreuz	PPS				
Lagerbolzen	rostfreier Stahl				
Stauscheibe	PPS				
Baugruppe Zählwerk					
Runddichtung, Lippenring	EPDM				
Blindstopfen, Zentrierring, Umbauring	PPO				
Abdichtplatte	Messing				
Verschlussstopfen	PPS				
Schiebering	PC				
Werk	Glas/Kupfer				

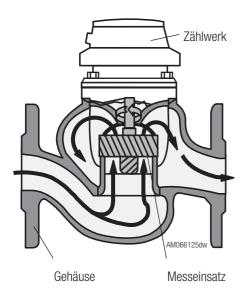
PV-Folie

POM

Typenschild

Deckel

Erklärung der Kurzzeichen

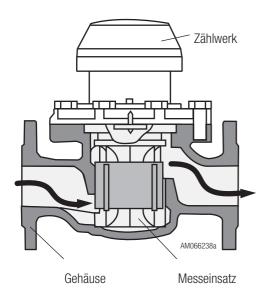

GG Gusseisen mit Lamellengraphit
PPS Polyphenylensulfid
PPO Polyphenylenoxyd
POM Acetalcopolymerisat

PA Polyamid PC Polycarbonat

EPDM Ethylen/Propylen Heisswasserdichtung

PV Polyvinyl

RUBIN WSDH



Bezeichnung	Material
Baugruppe Gehäuse	
Gehäuse	GG 25
Messeinsatzschrauben	rostfreier Stahl
Baugruppe Messeinsatz	
Flügelrad kpl.	
Flügelrad/Flügelradwelle	PPS
Pin Cabaiba Buahaa	Hartmetall
Scheibe, Buchse Kalottenstein, Lochstein	rostfreier Stahl Saphir
Lagerhülse, Klammer	Messing
Magnet	Hartferrit
Regulierung kpl.	
Regelflügel	PPS
Schubstange, Gewindestift, Bolzen	rostfreier Stahl
O-Ring	EPDM
Messeinsatz-Körper kpl.	
Grundstift, Scheibe, Sechskantmutter	
Stift Finanta Obertail	Hartmetall PPS
Einsatz-Oberteil Einsatz-Unterteil	PPS PPS
Buchse	rostfreier Stahl
Baugruppe Zählwerk	
Daugruppe Zamwerk	
Runddichtung, Lippenring	EPDM
Blindstopfen, Zentrierring, Umbauring	
Abdichtplatte	Messing
Verschlussstopfen Schiebering	PPS PC
Werk	Glas/Kupfer
Typenschild	PV-Folie
Deckel	POM

Erklärung der Kurzzeichen

GG	Gusseisen mit Lamellengraphit
PPS	Polyphenylensulfid
PP0	Polyphenylenoxyd
POM	Acetalcopolymerisat
PC	Polycarbonat
EPDM	Ethylen/Propylen Heisswasserdichtung
PV	Polyvinyl

RUBIN SMQ

Erklärung	der Kurzzeichen
CC	Ctablance

El Klai uliy	uei kuizzeiciieii
GS	Stahlguss
PPS	Polyphenylensulfid
PC	Polycarbonat
PEEK	Polyetheretherketone
Novapress	Aramid-Kautschuk

Bezeichnung	Material
Baugruppe Gehäuse	
Gehäuse	GS
Messeinsatzschrauben	rostfreier Stahl
Baugruppe Messeinsatz	
Flügelrad kpl.	
Flügelrad	PEEK
Lagerbuchse	Saphir
Lagerstift	Hartmetall
Magnet	Ferrit
Magazinaatz Kärnar kul	
Messeinsatz-Körper kpl. Messeinsatz	PEEK
Klammer	rostfreier Stahl
Regulierung	PEEK/rostfreier Stahl
Abdichtungsplatte	rostfreier Stahl
Flachdichtung	Novapress
- Tatananang	
Baugruppe Zählwerk	
Übersetzungsräder	PPS
Werkplatte	PPS
Lager	Saphir/PPS
Oberwerkgehäuse	PPS
Zahlenrolle, Zahnräder	PPS
Deckel	PC

Sortiment

RUBIN WPDH

- Woltman Turbinenzähler in Bauweise Trockenläufer, IP 68
- Besser als Metrologische Klasse B nach 79/830/EWG-Richtlinie oder Klasse 2 nach EN 1434
- Für horizontalen oder vertikalen Einbau, gerade Einlaufstrecke von 3 x DN empfohlen
- Pulverbeschichtetes Graugussgehäuse mit Flanschanschluss
- Nenndruck 16 bar
- Temperatur max. 130 °C

Nenndurchmesser	DN	mm	40	50	65	80	100	125	150	200	250	300 ²⁾
		Zoll	1 1/2	2	2 1/2	3	4	5	6	8	10	12
Artikel-Nummer			90483	92493	92494	92495	92496	92497	92498	150536	150536	150536
Max. Durchfluss	Qmax 1)	m³/h	20	30	60	90	140	200	300	500	1000	1200
Nenndurchfluss	Qn	m³/h	10	15	25	45	70	100	150	250	500	600
Min. Durchfluss	Qmin	m³/h	0.6	0.6	1.0	1.4	2.0	3.5	4.5	8	25	30
Anlauf bei ca.		m³/h	0.25	0.25	0.3	0.35	0.6	1.1	1.7	2.0	10	15
Nach EWG Zulassung Kl. B	4)											
Max. Durchfluss	Qmax	m³/h	-	30	50	80	120	200	300	500	800	1200
Nenndurchfluss	Qn	m³/h	-	15	25	40	60	100	150	250	400	600
Übergangsdurchfluss	Qt	m³/h	-	2.25	3.75	6	9	15	22.5	37.5	60	90
Min. Durchfluss	Qmin	m³/h	-	0.6	1	1.6	2.4	4	6	10	16	24
k _v -Wert ³⁾			82	94	101	330	460	570	1050	2500	6200	11200
Gewicht		ca. kg	7.5	8	10	14	18	21	36	51	72	99
<u> </u>	Baulänge	L	220	200	200	225	250	250	300	350	450	500
1		h	69	73	85	95	105	118	135	162	194	226
		Н	120	120	120	150	150	160	177	206	231	256
		g	200	200	200	270	270	280	356	441	466	491
- L												
- L → WW												

- Gesamthaft während max. 24 Stunden
 Grössere Nennweiten auf Anfrage
 K_I-Wert = Durchfluss in m³/h Wasser bei Druckabfall von 1bar
 EWG Bauartzulassung D 22.16 96.01 Klasse B, die Werte sind für die Eichung massgebend

Impulsgeber Reed	RD 02/I	RD 022									
Impulswert (klein)	I/Imp.	100	100	100	100	100	100	1000	1000	1000	1000
Impulsfrequenz bei Qmax	Hz	0.055	0.083	0.167	0.250	0.389	0.556	0.083	0.139	0.278	0.333
Impulswert (gross)	l/lmp.	250	250	250	250	250	250	2500	2500	2500	2500
Impulsfrequenz bei Qmax	Hz	0.011	0.033	0.067	0.100	0.156	0.222	0.033	0.056	0.111	0.133
Impulsgeber optoelektronisch	OD AM										
Impulswert	I/Imp.	1	1	1	1	1	1	10	10	10	10
Impulsfrequenz bei Qmax	Hz	5.555	8.333	16.67	25.00	38.89	55.56	8.333	13.89	27.78	33.33
Impulsfrequenz bei Qmin	Hz	0.167	0.167	0.278	0.389	0.556	0.972	0.125	0.222	0.694	0.833
	OD 04										
Impulswert	I/Imp.	10	10	10	10	10	10	100	100	100	100
Impulsfrequenz bei Qmax	Hz	0.017	0.833	1.667	2.500	3.889	5.556	0.833	1.389	2.778	3.333
Impulsfrequenz bei Qmin	Hz	0.555	0.017	0.028	0.039	0.056	0.097	0.013	0.022	0.069	0.083

Druckverlustkurven

(siehe Seite 14)

RUBIN WSDH

- Woltman Turbinenzähler in Bauweise Trockenläufer, IP 68
- Besser als Metrologische Klasse B nach 79/830/EWG-Richtlinie oder Klasse 2 nach EN 1434
- Für horizontalen Einbau, gerade Einlaufstrecke von 3 x DN empfohlen
- Pulverbeschichtetes Graugussgehäuse mit Flanschanschluss
- Nenndruck 16 bar
- Temperatur max. 130 °C

max ¹⁾ n min min	mm Zoll m³/h m³/h m³/h	50 92379 50 2 30 15 0.25 0.06	92380 65 2 1/2 60 25 0.30 0.07	80 92381 80 3 85 40 0.30 0.1	100 92382 100 4 125 60 0.50	150 180529 150 6 300 150 0.80
max ¹⁾ n min	Zoll m³/h m³/h m³/h	50 2 30 15 0.25	65 2 1/2 60 25 0.30	80 3 85 40 0.30	100 4 125 60 0.50	150 6 300 150 0.80
max ¹⁾ n min	Zoll m³/h m³/h m³/h	2 30 15 0.25	2 1/2 60 25 0.30	3 85 40 0.30	4 125 60 0.50	6 300 150 0.80
n min	m³/h m³/h m³/h	30 15 0.25	60 25 0.30	85 40 0.30	125 60 0.50	300 150 0.80
n min	m³/h m³/h	15 0.25	25 0.30	40 0.30	60 0.50	150 0.80
min	m³/h	0.25	0.30	0.30	0.50	0.80
max	m³/h	0.06	0.07	0.1	0.15	
max					0.15	0.5
max						
	m³/h	30	50	80	120	300
n	m³/h	15	25	40	60	150
t	m³/h	3	5	8	12	30
min	m³/h	1.2	2	3.2	4.8	12
		60	98	138	195	400
	kg	14	18	20	33	92
aulänge	e L	270	300	300	360	500
	h	80	100	100	110	180
	Н	151	161	161	191	301
	g	281	301	301	341	581
		kg aulänge L h H	60 kg 14 aulänge L 270 h 80 H 151	60 98 kg 14 18 aulänge L 270 300 h 80 100 H 151 161	60 98 138 kg 14 18 20 aulänge L 270 300 300 h 80 100 100 H 151 161 161	60 98 138 195 kg 14 18 20 33 aulänge L 270 300 300 360 h 80 100 100 110 H 151 161 161 191

Gesamthaft während max. 24 Stunden
 k_y-Wert = Durchfluss in m³/h Wasser bei Druckabfall von 1bar
 EWG Bauartzulassung D 22.16 - 97.03 Klasse B, die Werte sind für die Eichung massgebend

Impulsgeber Reed	RD 02 / RD 022					
Impulswert (klein)	l/lmp.	100	100	100	100	1000
Impulsfrequenz bei Qmax	Hz	0.083	0.167	0.236	0.347	0.083
Impulswert (gross)	l/lmp.	250	250	250	250	2500
Impulsfrequenz bei Qmax	Hz	0.033	0.067	0.094	0.139	0.033
Impulsgeber optoelektronisch	OD AM					
Impulswert	l/lmp.	1	1	1	1	10
Impulsfrequenz bei Qmax	Hz	8.333	16.67	23.61	34.72	8.33
Impulsfrequenz bei Qmin	Hz	0.069	0.083	0.083	0.139	0.022
	OD 04					
Impulswert	l/lmp.	10	10	10	10	100
Impulsfrequenz bei Qmax	Hz	0.833	1.667	2.361	3.472	0.833
Impulsfrequenz bei Qmin	Hz	0.007	0.008	0.008	0.014	0.002

Druckverlustkurven

(siehe Seite 14)

RUBIN SMQ

- Woltman Turbinenzähler in Bauweise Trockenläufer, IP 68
- Besser als Metrologische Klasse A nach 79/830/EWG-Richtlinie oder Klasse 2 nach EN 1434
- Für horizontalen Einbau, gerade Einlaufstrecke von 3 x DN empfohlen
- Pulverbeschichtetes Stahlgussgehäuse mit Flanschanschluss
- Nenndruck 40 bar
- Temperatur max. 200 °C

RUBIN			SMQ 50	SMQ 80	SMQ 100
Artikel-Nr.			92490	92491	92492
Nenndurchmesser	DN	mm	50	80	100
		Zoll	2	3	4
Max. Durchfluss	Qmax 1)	m³/h	25	70	100
Nenndurchfluss	Qn	m³/h	15	40	60
Min. Durchfluss	Qmin	m³/h	0.6	1.6	2.4
k _v -Wert 2)			60	138	195
Gewicht		kg	16	23	41
	Baulänge	L	270	300	360
*		h	80	100	110
		Н	195	205	235
		g	325	345	385
		· ·			
MM066238					

Gesamthaft während max. 24 Stunden
 k_V-Wert = Durchfluss in m³/h Wasser bei Druckabfall von 1bar

Impulsgeber Reed	K 02				
Impulswert (klein)		l/lmp.	100	100	100
Impulsfrequenz bei Qmax		Hz	0.069	0.194	0.278
Impulswert (gross)		l/lmp.	0.25	0.25	0.25
Impulsfrequenz bei Qmax		Hz	0.028	0.078	0.111
Impulsgeber induktiv	K 05				
Impulswert		l/lmp.	10	10	10
Impulsfrequenz bei Qmax		Hz	0.694	1.944	2.778
Impulsfrequenz bei Qmin		Hz	0.017	0.044	0.067
	K 06				
Impulswert		I/Imp.	1	1	1
Impulsfrequenz bei Qmax		Hz	6.944	19.444	27.778
Impulsfrequenz bei Qmin		Hz	0.167	0.444	0.667

Druckverlustkurven

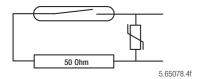
(siehe Seite 15)

Rollenzählwerke

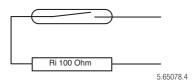
WPDH 40...125 und WSDH 50...100

WPDH 150...300 und WSDH 150

SMQ 50...100



Impulsgeber


WPDH und WSDH

Die Reed- und optoelektronischen Impulsgeber sind nachrüstbar ohne Verletzung der Plomben. Für die Reed-Impulsgeber sind 2 Steckpositionen mit unterschiedlichen Impulswerten vorhanden, die auf dem Zifferblatt angegeben sind.

RD 02 Reed-Impulsgeber

RD 022 Reed-Impulsgeber

Schaltelement

Kontaktschutz

Schaltspannung

Schaltstrom

Ruhestrom Schaltleistung

Impulsdauer

Umgebungstemperatur Schutzart

Anschluss Artikel-Nummer RD 02

Artikel-Nummer RD 022

• Reedkontaktröhre mit Schutzgasfüllung, in Steckausführung

ullet RD 02: mit Schutzwiderstand (50 Ω) und Varistor

• RD 022: mit Schutzwiderstand (100 Ω)

• RD 02: max. 48 VAC oder DC

• RD 022: max. 125 VAC oder DC

• RD 02: max. 200 mA

• RD 022: max. 35 mA

offener Kontakt

• RD 02: max. 4 W

• RD 022: max. 2 W

• unabhängig vom Durchfluss; Dauerkontakt möalich

• -10...+70 °C

• IP 68 nach IEC 144

• Kabel fest montiert, Länge 3 m

• 93748

• 93749

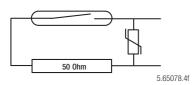
OD AM und OD 04 Optoelektronische Impulsgeber Schaltelement

 IR-Reflex-Lichtschranke nach DIN 19234 in Steckausführung

• 8.2 VDC Schaltspannung Schaltstrom • <1.2 mA Ruhestrom • >2.1 mA

Vor-/Rückwärtserkennung

• ist beim OD 04 über eine zusätzliche Stromschwelle bei 1.5 mA integriert


• der OD AM hat eine integrierte Vor-/Rückwärtserkennung und gibt nur Vorwärtsimpulse aus (Jitter-Unterdrückung)

Umgebungstemperatur • -10...+70 °C Schutzart • IP 68 nach IEC 144 Anschluss • Kabel fest montiert, Länge 3 m

Artikel-Nummer OD AM • 93751 Artikel-Nummer OD 04 • 93753

SMQ

K02 Reed-Impulsgeber

Schaltelement • Reedschalter in Steckausführung Kontaktschutz • mit Schutzwiderstand und Varistor • max. 48 VAC oder DC Schaltspannung

Schaltstrom • max. 200 mA Ruhestrom offener Kontakt Schaltleistung • max. 4 W • abhängig vom Durchfluss; Dauerkontakt möglich Impulsdauer

Umgebungstemperatur • -10...+60 °C

Schutzart • IP 66 nach IEC 144 Anschluss • Kabel, Länge 2.5 m

• 100 Liter / 250 Liter (zwei Einbaulagen) Impulswerte

Artikel-Nummer • 93715

K05/K06 induktiver Impulsgeber

Schaltelement

• HF-induktiver Steuerkopf nach DIN 19234 als Schlitzinitiator in Steckfassung

 8 VDC Schaltspannung

Stromaufnahme: Spalt zu

Stromaufnahme: Spalt frei $\bullet \ge 3$ mA (Innenwiderstand ≈ 1 k Ω) • ≤ 1 mA (Innenwiderstand ≈ 7 k Ω)

> Die Änderung des Innenwiderstands wird zur Steuerung nachgeschalteter Transistorrelais

verwendet. • abhängig vom Durchfluss, Dauerkontakt möglich

Impulsdauer Umgebungstemperatur

Schutzart • IP 54 nach IEC 144 Anschluss • Kabel, Länge 2.5 m

Poluna • braune Ader (+) / blaue Ader (-) nach EN 50044

• -10...+60 °C

Artikel-Nummer K05 • 93722 Artikel-Nummer K06 • 93754

Anwendungen WPDH und WSDH

Reed Impulsgeber RD 02 / RD 022 (passiv)

- Fernübertragungen, Fernanzeigen
- Eingangssignal für Steuerungen und Leitsysteme
- Datalogging
- als Impulsgeber des hydraulischen Gebers für Wärmemessstellen
- Eingangssignal für das Modul AMBUS® IS mit M-Bus Ausgangssignal

Optoelektronischer Impulsgeber OD AM (kleiner Impulswert)

- als Impulsgeber des hydraulischen Gebers für Wärmemessstellen, bei denen eine grösstmögliche Auflösung gefordert ist
- Standardanwendung für alle Wärmemessstellen mit Rechenwerken mit namurkompatiblem Impulseingang
- für Momentanwertbildung
- für Kältemessungen
- für eine automatische Korrektur von Impulsen aufgrund von Schwankungen der Flüssigkeitssäule (Jitter)

Optoelektronischer Impulsgeber OD 04 (grosser Impulswert)

- als Impulsgeber des hydraulischen Gebers für Wärmemessstellen
- geeignet für nachgeschaltete Geräte, die über eine integrierte Vor-/Rückerkennung bei wechselnder Durchflussrichtung das korrekte Volumentotal bilden können

Anwendungen SMQ

Reed Impulsgeber K 02 (passiv)

- Fernübertragungen, Fernanzeigen
- Eingangssignal für Steuerungen & Leitsysteme
- Datalogging
- als Impulsgeber des hydraulischen Gebers für Wärmemessstellen
- Eingangssignal für das Modul AMBUS® IS mit M-Bus Ausgangssignal

Induktiver Impulsgeber K 06 (kleiner Impulswert)

- als Impulsgeber des hydraulischen Gebers für Wärmemessstellen, bei denen eine grösstmögliche Auflösung gefordert ist
- Standardanwendung für alle Wärmemessstellen mit Rechenwerken mit namurkompatiblem Impulseingang
- für Momentanwertbildung
- für Kältemessungen

Induktiver Impulsgeber K 05 (grosser Impulswert)

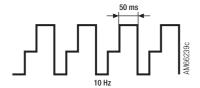
- als Impulsgeber des hydraulischen Gebers für Wärmemessstellen, bei denen eine hohe Auflösung gefordert ist
- Anwendung für alle Wärmemessstellen mit Rechenwerken mit namurkompatiblem Impulseingang

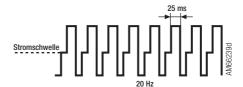
Ansteuerung, Auswahl und Auswertung

Speisung der Impulsgeber

Die optoelektronischen (OD) und induktiven Impulsgeber (K05 / K06) werden über das Wärmerechenwerk oder mittels eines geeigneten Frequenzmessumformers gespiesen.

Zur Fernauswertung oder –anzeige der Durchflussmesswerte stehen auch passive Impulsgeber (Reed) zur Verfügung (RD, KO2). Der Impulsgeber ist durch das nachgeschaltete Gerät mit Spannung zu versorgen; bei den passiven Impulsgebern kommen auch Geräte mit Batteriespeisung in Frage.

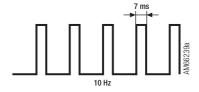

Wahl des richtigen Impulsgebers

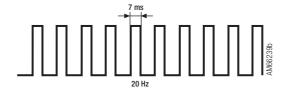

Die Wahl des richtigen Impulsgebers sowie des günstigsten Impulswertes richtet sich nach der Anwendung. Für Momentanwertbildung, Analogsignale und als hydraulischer Geber für Wärmerechner werden in der Regel kleine Impulswerte gewählt (z.B. optoelektronischer Impulsgeber OD AM resp. induktiver Impulsgeber K06 mit einem Impulswert von 1 Liter). Für Ferntotalisierungen werden grosse Impulswerte gewählt (z.B. Impulsgeber Reed RD 02 oder K02 mit einem Impulswert von 250 Litern bis DN 125). Bei Auswertegeräten mit Batteriespeisung kommen nur Reed-Impulsgeber zum Einsatz.

Auslegung der angesteuerten Geräte

Bei den meisten Impulsgebern ist die Impulsdauer abhängig von der Durchflussleistung (ausser beim OD AM). Bei Nulldurchfluss kann in diesem Fall Dauerkontakt auftreten. Das angeschlossene Gerät muss deshalb Dauerbelastung ertragen können, andernfalls sind Schutzeinrichtungen wie z.B. das Trennschaltgerät WE 77 (Art. 81526) vorzusehen.

Beispiel: Beim OD 04 ist die Impulslänge abhängig vom Durchfluss, da das Verhältnis aktiv / passiv immer gleich ist. Bei Vorwärtsdurchfluss weist die ansteigende Impulsflanke eine zusätzliche Stromschwelle bei 1.5 mA auf. Bei Rückwärtsdurchfluss befindet sich die Stromschwelle auf der abfallenden Impulsflanke.

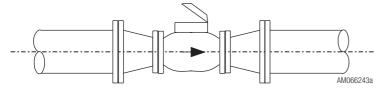




Richtige Impulsauswertung

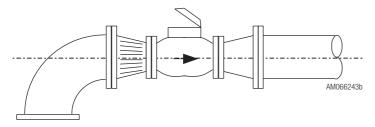
Bei unterbrochenem Durchfluss kann in Anlagen ein Pendeln der Flüssigkeitssäule auftreten (hydraulische Vibration mit geringfügig alternierendem Vorwärts-/Rückwärtsdurchfluss sog. Jitter). In solchen Fällen können Impulse entstehen, die vom Folgegerät ausschliesslich als Vorwärtsdurchfluss registriert werden. Bei der Momentanwertbildung stören solche Impulse nicht, da die Frequenz sehr klein ist. Wenn mit dem Impulsgeber eine Zählfunktion (wie in allen Wärmemessstellen) gesteuert wird, sollte der optoelektronische Impulsgeber OD AM gewählt werden, der durch eine geeignete elektronische Schaltung die durch das Vorwärts-/Rückwärtspendeln der Wassersäule generierten Impulse herausfiltert.

Beim OD AM ist die Impulsbreite immer konstant; diese orientiert sich an der maximalen Frequenz von etwa 70 Hz und beträgt etwa 7 ms für alle Impulsfrequenzen; ansteigende und abfallende Impulsflanken sind immer gleich. Rückwärtsimpulse werden nicht ausgegeben.

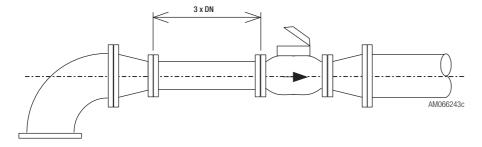

Hinweis

Beim OD AM ist im Zusammenspiel mit dem CALEC® Rechenwerk darauf zu achten, dass bei der Programmierung der Prellfilter (in der Regel verwendet für passive Reed Impulsgeber) nicht gesetzt sein darf. Es ist der NAMUR 200 Hz Eingang am Rechenwerk zu verwenden.

Einbauhinweise


Nennweiten: Rohrleitungen, Zähler und Kaliberwechsel

Die Auslegung der Nennweite des Zählers darf nicht automatisch nach der Nennweite der Rohrleitung erfolgen. Entscheidend ist der grösste dauerhaft auftretende Durchfluss in der Rohrleitung, der den Nenndurchfluss Qn des Zählers bestimmt.


Rohrbögen und Strömungsgleichrichter

Durch eingebaute Rohrbogen oder Kaliberwechsel wird das Strömungsprofil stark verändert, was sich auf die Anströmung des Turbinenrades des Zählers auswirkt. Als Folge treten Messabweichungen auf, die durch geeignete bauliche Massnahmen verhindert werden können. Dazu werden Strömungsgleichrichter verwendet, die direkt nach dem Rohrbogen eingebaut werden; sind die Platzverhältnisse ausreichend, sollten zusätzliche Beruhigungsstrecken berücksichtigt werden. Im Gleichrichter wird das Strömungsprofil wieder beruhigt. Strömungsgleichrichter gibt es auch in Kombination mit einem Kaliberwechsel.

Ein- und Auslaufstrecken

Die beste Genauigkeit erzielen Woltmanzähler, wenn ausreichende Ein- und Auslaufstrecken bei der Auslegung der Messstelle berücksichtigt werden. Die Einlaufstrecke sollte mindestens 3 x DN betragen, ansonsten ist ein Strömungsgleichrichter einzubauen. Die Anforderungen an die Auslaufstrecken sind weniger streng, da grundsätzlich nur sprunghafte Querschnittsänderungen direkt hinter dem Zähler vermieden werden sollten.

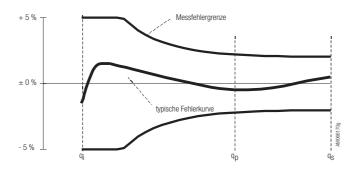
Einbauhöhe

Die RUBIN Woltmanzähler verfügen über austauschbare Messeinsätze, die unabhängig vom Gehäuse geprüft und geeicht werden können. Dazu wird der Messeinsatz nach oben ausgebaut. Bei der Installation ist darauf zu achten, dass eine ausreichende Ausbauhöhe über dem Zähler berücksichtigt wird.

Einbaulage / Vertikale Leitungen

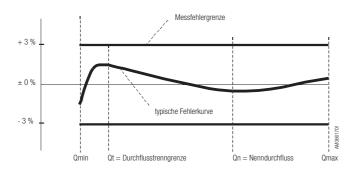
Hinweis: Bei vertikalen Leitungen ist immer ein RUBIN Woltmanzähler vom Typ WPDH einzusetzen (muss aus anlagespezifischen Gründen dennoch ein WSDH eingebaut werden, weisen wir darauf hin, dass in dieser Einbaulage nicht die metrologischen Zulassungsanforderungen erfüllt werden).

Zähler dürfen nicht mit dem Zählwerk nach unten eingebaut werden, da in dieser Einbaulage die metrologischen Zulassungsanforderungen nicht erfüllt werden.

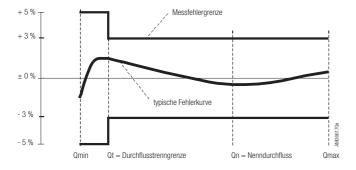

Elektrische Installationen

Elektrische Leitungen und Installationen sind gemäss gültigen Vorschriften durch autorisiertes Fachpersonal auszuführen.

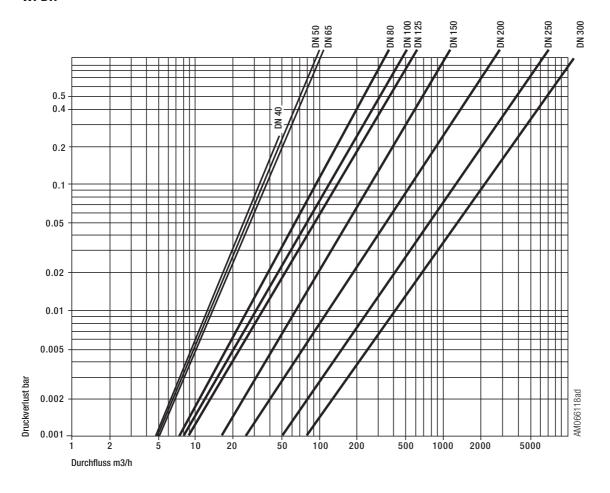
Messfehlergrenzen


Messfehlergrenzen nach EN 1434 für hydraulische Geber

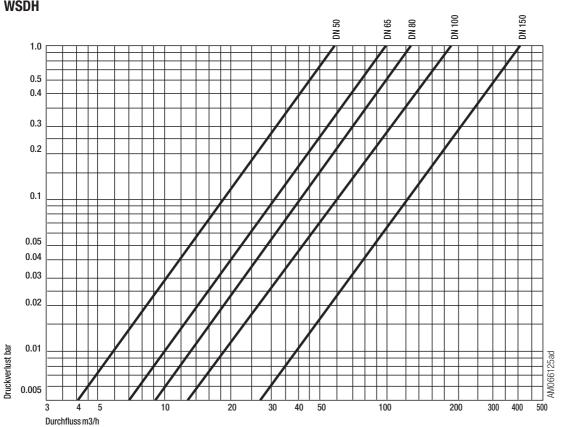
Messfehlergrenzen für hydraulische Geber (Volumenmessteil für Wärmezähler)


Messfehlergrenzen nach OIML R72 und R75 für hydraulische Geber (Qn $> 3 \text{ m}^3\text{/h}$)

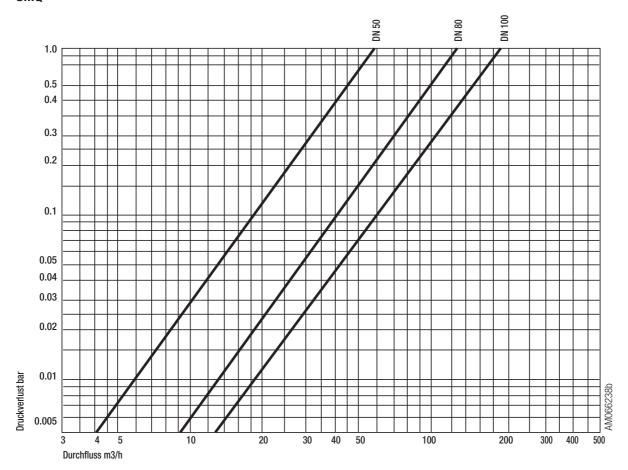
Messfehlergrenzen für hydraulische Geber (Volumenmessteil für Wärmezähler), bei denen $Qn > 3 \text{ m}^3/h$


Messfehlergrenzen nach OIML R72 und nach Richtlinie 79/830/EWG (Warmwasserzähler)

Messfehlergrenzen für Warmwasserzähler nach OIML R72 und nach Richtlinie 79/830/EWG.



Druckverlustkurven


WPDH

SMQ

H. Hermann Ehlers GmbH

An der Autobahn 45 28876 Oyten Tel. 04207/91 21-0 Fax 04207/91 21 -41

 ${\bf Email: verkauf@ehlersgmbh.de}$