H. HERMANN EHLERS GMBH

DURCHFLUSSZÄHLER · DOSIERSTEUERUNG · VENTILE · ARMATUREN

Wärmemengenzähler

Dynasonics® UHC100

INHALTSVERZEICHNIS

ZWECK DIESER BEDIENUNGSANLEITUNG	1
AUSPACKEN UND INSPEKTION	1
SICHERHEIT4	4
Terminologie und Symbole	1
Grundlegende Sicherheitsempfehlungen	1
ANWENDUNGSGEBIET	5
Messgerät-Bestellnummernmatrix	5
TECHNISCHE DATEN	9
Energiemessung	9
Durchflussmessung	9
Impulseingänge (zusätzlich))
Temperaturmessung)
Display)
Datenaufzeichnung und -speicherung	1
Externe Kommunikationsschnittstellen	2
Impulsausgänge	2
Messgerät-Stromversorgung	3
Gesamtabmessungen	3
Betriebsbedingungen	3
FUNKTIONSPRINZIP	4
KENNZEICHNUNG UND VERSIEGELUNG	5
Kennzeichnung	5
Versiegelung des Messgeräts (Anhang C)	5
EINBAUVERFAHREN	7
Allgemeine Anforderungen	7
Konfiguration des Messgeräts überprüfen	7
Elektrische Verkabelung)
Installation	1
BETRIEBSABLAUF	3
Steuerung	3
Darstellung der Daten	3
Menüstruktur	4
Testmodussteuerung	5

ÜBERPRÜFUNG	38
TRANSPORT UND LAGERUNG	39
Anhang A	39
Anhang B	41
Anhang C	47
RETOURE / LINREDENKLICHKEITSERKI ÄRLING	1 C

ZWECK DIESER BEDIENUNGSANLEITUNG

Diese Bedienungsanleitung soll dazu dienen, das Dynasonics® UHC100-Ultraschallmessgerät schnell einrichten und in Betrieb nehmen zu können.

AUSPACKEN UND INSPEKTION

Beim Öffnen des Versandbehälters das Produkt und die Zubehörteile einer Sichtprüfung unterziehen und dabei auf Kratzer, lose oder abgebrochene Teile oder andere Zeichen für Beschädigungen achten, die möglicherweise während des Transports aufgetreten sind.

HINWEIS:

Wurde eine Beschädigung festgestellt, muss innerhalb von 48 Stunden nach Anlieferung eine Inspektion durch den Agenten des Spediteurs durchgeführt und eine Reklamation beim Spediteur eingereicht werden.

Eine Reklamation wegen einer Beschädigung der Ausrüstung während des Transports liegt in der alleinigen Verantwortung des Käufers.

SICHERHEIT

Terminologie und Symbole

Anzeige einer gefährlichen Situation, die, wenn sie nicht verhindert wird, möglicherweise Lebensgefahr bedeutet oder die Möglichkeit schwerer Verletzungen in sich birgt.

AWARNING

Anzeige einer gefährlichen Situation, die, wenn sie nicht verhindert wird, schwere Verletzungen, möglicherweise mit Todesfolge verursachen kann.

ACAUTION

Anzeige einer gefährlichen Situation, die, wenn sie nicht verhindert wird, möglicherweise leichtere bis mittelschwere Verletzungen oder Sachbeschädigung bedeutet.

Grundlegende Sicherheitsempfehlungen

Vor der Installation oder Inbetriebnahme dieses Produkts bitte diese Bedienungsanleitung sorgfältig durchlesen. Nur qualifiziertes Personal darf dieses Produkt installieren und/oder reparieren. Wenn ein Fehler auftritt, an den Distributor wenden.

Installation

Keine Einheit auf eine instabile Fläche stellen, von der sie herunterfallen kann.

Die Einheiten niemals oberhalb eines Heizstrahlers oder einer Heizung platzieren.

Kabel nicht in der Nähe von möglichen Gefahrenherden verlegen.

Die Einheit stromlos schalten, bevor irgendwelche Abdeckungen abgenommen werden.

Netzanschluss

Nur eine für elektronische Ausrüstung geeignete Steckdose verwenden. Bei Zweifeln an den Distributor wenden. Sicherstellen, dass alle Stromkabel eine ausreichend hohe Kapazität aufweisen.

Alle Einheiten müssen geerdet werden, um das Risiko eines Stromschlags zu vermeiden.

Eine nicht korrekt geerdete Einheit oder darauf gespeicherte Daten können beschädigt werden.

Schutzklasse

Dieses Gerät hat die Schutzklasse IP 65/67/68.

Einrichtung & Inbetriebnahme

Eine falsche Einstellung sonstiger Bedienelemente kann zu Schäden, falsche Inbetriebnahme oder Datenverlust führen. Eine falsche Einstellung sonstiger Bedienelemente kann zu Schäden, fehlerhaftem Betrieb oder Datenverlust führen.

Reinigung

Alle Einheiten ausschalten und die Anlage vor dem Reinigen stromlos schalten.

Mit einem feuchten Tuch reinigen. Keine Flüssig- oder Sprühreiniger verwenden.

Fehlerreparatur

Alle Geräte von der Stromzufuhr trennen und durch qualifiziertes Wartungspersonal reparieren lassen, wenn eine der folgenden Bedingungen erfüllt ist:

- Wenn das Netzkabel oder der Netzstecker beschädigt oder durchgescheuert sind
- Wenn ein Gerät nicht ordnungsgemäß funktioniert, obwohl alle Bedienungsanweisungen befolgt wurden
- Wenn ein Gerät Regen/Wasser ausgesetzt war oder wenn eine Flüssigkeit darauf verschüttet wurde
- Wenn ein Gerät fallengelassen wurde oder beschädigt ist
- Wenn sich die Leistungsfähigkeit eines Geräts ändert, was ein Hinweis auf eine fällige Wartung sein kann.

WARNING

Eine Nichtbefolgung dieser Sicherheitshinweise kann eine Beschädigung des Produkts oder schwere Verletzungen zur Folge haben.

RoHs

Unsere Produkte sind RoHs-kompatibel.

Batterieentsorgung

Die Batterien in unseren Produkten müssen gemäß den lokalen Bestimmungen unter Beachtung von EU-Direktive 2006/66/EG entsorgt werden.

ANWENDUNGSGEBIET

Das Dynasonics® UHC100-Ultraschallmessgerät für die Energiemessung von Kalt- und Warmwasser (im Folgenden bezeichnet als das "Messgerät") dient zur Energieverbrauchsmessung von Kalt- und Warmwasser sowie zur Aufzeichnung der Daten in zwei separaten Registern. Es findet Verwendung in individuellen Heizanlagen oder Fernwärmeeinrichtungen (Wohnanlagen, Unternehmen, Organisationen oder Versorgungsanlagen usw.) für die kommerzielle Messung des Energieverbrauchs, wenn Wasser der Wärmeträger ist.

Es handelt sich um ein kompaktes mikroprozessorgesteuertes Messgerät zur optionalen Montage an der Zulauf- oder Rücklaufleitung des Wärmetauschumlaufsystems mit permanent angeschlossenen Temperatursensoren.

Das Messgerät erfüllt die Anforderungen von Anhang 1, Anhang MI004 zur technischen Vorschrift über Messinstrumente und harmonisierte Normen LST EN 1434 – Wärmezähler (LST EN 1434-1:2016, LST EN 1434-2:2016, LST EN 1434-3:2016, LST EN 1434-5:2016).

Das Messgerät erfüllt die Anforderungen der Umweltklasse C gemäß LST EN1434-1:2016.

Klimatische Temperaturbereich: von 5 °C bis 55 °C

Umgebungsbedingungen:

Luftfeuchtigkeit: kondensierend Standort: geschlossen

Mechanische Umgebungsklasse: M1 Elektromagnetische E2

Umgebungsklasse:

Messgerät-Bestellnummernmatrix

Messgerättyp	Dynasonics® UHC100

Verwendungszweck:	Einbauort des Durchflusssensors:	Code
Wärmeenergiezähler	in Zulaufleitung	1
	in Rücklaufleitung	2
Wärme- und	in Zulaufleitung	3
Kühlenergiezähler	in Rücklaufleitung	4

Verhältnis der Durchflussraten (q _p /q _i):	Minimale Temperaturdifferenz:	Code
100	2 K	1
250*	2 K	2
100	3 K (Standard)	3
250*	3 K (Standard)	4

Durchflusssensor:

q _p , m³/h	L, mm	Anschluss	Code	q _p , m³/h	L, mm	Anschluss	Code
0,6	110	G ¾	11	3,5	260	G1 ¼	41
1,0	110	G ¾	12	3,5	260	G1 1/2	42
1,5	110	G ¾	13	3,5	260	DN25	43
1,5	165	G ¾	14	3,5	260	DN32	44
1,5	130	G1	21	6,0	260	G1 ¼	45
2,5	130	G1	22	6,0	260	G1 1/2	46
0,6	190	G1	31	6,0	260	DN25	47
0,6	190	DN20	32	6,0	260	DN32	48
1,0	190	G1	33	10,0	300	G2	51
1,0	190	DN20	34	10,0	300	DN40	52
1,5	190	G1	35	15,0	270	DN50	61
1,5	190	DN20	36	25,0	300	DN65	71
2,5	190	G1	37	40,0	300	DN80	81
2,5	190	DN20	38	60,0	360	DN100	92

Kommunikationsschnittstelle:	Code	Kommunikations schnittstelle:	Code
nicht enthalten	0	RF 868 MHz	2
M-Bus	1	M-Bus und RF 868 MHz	3

Stromversorgungstyp:	Code	Stromversorgungstyp:	Code
Interne Batterie (eine)	1	Netzstromversorgung 230 V AC	3
Externe Versorgungs- spannung 24 V AC/DC	2	Interne Batterie (zwei)	4

^{*}nur für Messgeräte mit $q_p = 1.5 \text{ m}^3/\text{h}$; 2,5 m^3/h ; 6,0 m^3/h ; 10 m^3/h ; 15 m^3/h ; 25 m^3/h ; 60 m^3/h

Messgerät-Bestellnummernmatrix (Fo	ortsetzur	ng):										
	Dyna	soni	cs® UHC100 E3-		- <u> </u> -[]-[]-[]-[]-	<u></u> -[]-[]-□-
Länge des Durchflusssensorkabels:	Code	Länc	ge des Durchflusssensorkabels:	Code								
1,2 m (Standard)	1	5 m	,	3								
2,5 m	2											
Zusätzliche Kommunikationsschnittstelle:	Code	Zus	ätzliche Kommunikationsschnittstelle:	Code	J							
nicht enthalten	0	CL		3								
M-Bus	1	Mi	niBUS	4								
ModBus® RS485	2											
Schutzklasse / Nenndruck:	Code	Sch	nutzklasse / Nenndruck:	Code		1						
IP65 / PN16 (Standard)	1	IP6	5 / PN25	4								
IP67 / PN16	2	IP6	57 / PN25	5								
IP68 / PN16	3	IP6	58 / PN25	6								
Temperaturbereich:	Zusät	zliche	e Ein-/Ausgänge:	Code								
0 bis 90 ℃	Nein			1								
(Standard)	Ja			2								
0 bis 130 °C	Nein			3								
	Ja			4								
Länge des Temperatursensorkabels:		ode	Länge des Temperatursensorka	bels:	Cod	de						
1,5 m (Standard)	1		3 m		4							
2 m	2	<u> </u>	5 m		5							
2,5 m	3	,	10 m		6							
Konfigurationsprofil:					Coc	le						
Standard					07							
mit ausgeschaltetem Transportmod	us				08							
Energiemesseinheiten:	10	ode	Energiemesseinheiten:		Cod	e				I		
0,001 MWh	1		0,001 Gcal		3							
0.001 GJ	2		1 kWh		4							
Wärmeträgertyp:					Cod]	
Wasser					1							
Tomporatureoncort	1,	اعطما	Tomporatureonesitiva		Cod							
Temperatursensortyp: DS mit Kunststoffmutter	1	ode	Temperatursensortyp: DS mit Motallmutter (bis DN35)			e						
(Standard, bis DN25)			DS mit Metallmutter (bis DN25)		5							
PL (ab DN32)	2											

$Messger\"{a}t\text{-}Bestellnummernmatrix (Fortsetzung):$

Dynasonics® UHC100	E3]-[]	-[_]-	· 📗	-[]-]-[]	<u> </u>]-[_]-[_]-[
--------------------	----	--	--	------	-------	-----	------	--	------	----------	--	------	------	-----

Mountingkit für Temperatursensor	Code	Mountingkit für Temperatursensor	Code
nicht enthalten	0	T-Stück (für DS-Sensoren)	2
Ventil für DS-Sensoren	1	Schutzsteckdosen (für PL-Sensoren)	3

Montagesatz für Durchflusssensor:	Code	Montagesatz für Durchflusssensor:	Code
nicht enthalten	0	Flansche mit Dichtungen	3
Gewindekit mit Dichtungen	1	Nur Dichtungen	4
Schweißkit mit Dichtungen	2		

TECHNISCHE DATEN

Energiemessung

Genauigkeitsklasse: 2 gemäß LST EN1434-1:2016.

Energiemesseinheiten: kWh; MWh; GJ; Gcal

Maximale Wärmeenergie: 5,28 MW

Durchflussmessung

Verhältnis der permanenten Durchflussrate zum unteren Grenzwert der Durchflussrate (durch Benutzer wählbar): $q_p/q_i=100$, oder $q_p/q_i=250$ (nur für Sensoren mit $q_p=1.5~\text{m}^3/\text{h}$; 2.5 m^3/h ; 6.0 m^3/h ; 15 m^3/h ; 25 m^3/h ; 40 m^3/h ; 60 m^3/h) Die technischen Daten des Durchflusssensors sind in Tabelle 1 aufgeführt.

Permanente Durchfluss rate q _p , m³/h	Obere Durchfluss- rate q _s , m³/h	Untere Durchfluss- rate q _i , m³/h	Grenzwert der Durchfluss- rate, m³/h	Länge des Durchfluss- sensors L, mm	Druck-abfall bei q _p , kPa	Verbindung mit Leitung (Gewinde - G, Flansch - DN)
0,6	1,2	0,006	0,003	110	7	G3/4"
0,6	1,2	0,006	0,003	190	0,9	G1" oder DN20
1	2	0,01	0,005	110	11,3	G3/4"
1	2	0,01	0,005	190	2,5	G1" oder DN20
1,5	3	0,006	0,003	110; 165	17,1	G3/4"
1,5	3	0,006	0,003	190	5,8	G1" oder DN20
1,5	3	0,015	0,003	110; 165	17,1	G3/4"
1,5	3	0,015	0,003	190	5,8	G1" oder DN20
1,5	3	0,015	0,005	130	7,2	G1"
2,5	5	0,01	0,005	130	19,8	G1"
2,5	5	0,01	0,005	190	9,4	G1" oder DN20
2,5	5	0,025	0,005	130	19,8	G1"
2,5	5	0,025	0,005	190	9,4	G1" oder DN20
3,5	7	0,035	0,017	260	4	G1 1/4", G1 1/2", DN25 oder DN32
6	12	0,024	0,012	260	10	G1 1/4", G1 1/2", DN25 oder DN32
6	12	0,06	0,012	260	10	G1 1/4", G1 1/2", DN25 oder DN32
10	20	0,04	0,02	300	18	G2" oder DN40
10	20	0,1	0,02	300	18	G2" oder DN40
15	30	0,06	0,03	270	12	DN50
15	30	0,15	0,03	270	12	DN50
25	50	0,1	0,05	300	20	DN65
25	50	0,25	0,05	300	20	DN65
40	80	0,16	0,08	300	18	DN80
40	80	0,4	0,08	300	18	DN80
60	120	0,24	0,12	360	18	DN100
60	120	0,6	0,12	360	18	DN100

Tabelle 1: Technische Daten

Temperaturgrenzwerte der Wärmeträgerflüssigkeit: $0,1 \, ^{\circ}\text{C} - 90 \, ^{\circ}\text{C}$ (kundenspezifische, wandmontierte Elektronikeinheit: $0,1 \, ^{\circ}\text{C} - 130 \, ^{\circ}\text{C}$)

Länge des Verbindungskabels zwischen Durchflusssensor und Elektronikeinheit: 1,2 m

(Kundenspezifisch: 2,5 m oder 5,0 m)

Max. zulässiger Arbeitsdruck (Nenndruck PN): 16 bar oder 25 bar

Wenn die Durchflussrate den Maximalwert q_s erreicht:

• Wenn die Durchflussrate < 1,2·q₅, werden die Durchflussmessung und die Berechnungen fortgesetzt;

• Überschreitet die Durchflussrate 1,2·q_s, werden die Berechnungen unter Verwendung einer Durchflussrate von 1,2·q_s durchgeführt, der Fehler "Max. Durchflussrate überschritten" wird gespeichert und die Dauer des Fehlers berechnet.

Impulseingänge (zusätzlich)

• Anzahl der Impulseingänge: 2

Angezeigte Einheiten:

• Impulswert: programmierbar

Eingangsimpulstypen:

IB gemäß LST EN1434-2

Max. zulässige Frequenz der Eingangsimpulse: 3 Hz
 Max. zulässige Spannung der Eingangsimpulse: 3,6 V

• Wartungsbedingung bei hohem Pegel: 3,6 V durch 3,3-MΩ-Widerstand

• Wenn das Messgerät mit der Funktion "Impulseingang/-ausgang" bestellt wird, ist ein permanent angeschlossenes, 1,5 m langes Kabel am Messgerät vorhanden, an das die Ein-/Ausgänge angeschlossen werden können.

Temperaturmessung

Temperaturmessbereich: $0 \,^{\circ}\text{C} - 90 \,^{\circ}\text{C}$. (Kundenspezifisch: $0 \,^{\circ}\text{C} - 130 \,^{\circ}\text{C}$)
Temperaturdifferenzmessbereich: $2 - 70 \,^{\circ}\text{K}$ oder $3 - 70 \,^{\circ}\text{K}$ (Kundenspezifisch: $2 - 110 \,^{\circ}\text{K}$ oder $3 - 110 \,^{\circ}\text{K}$)

Temperatursensorausführung:

DS-Typ gemäß LST EN1434-2 (wenn der Anschlusstyp des Durchflusssensors G3/4, G1 oder G11/4 ist), PL-Typ gemäß LST EN1434-2 (für andere Durchflusssensor-Anschlusstypen).

Länge des angeschlossenen Kabels: bis zu 10 m

Display

8-stelliges LCD-Display für die Darstellung der Werte des angezeigten Parameters und für die Darstellung der Parameter, Messeinheiten und Betriebsmodi mit speziellen Symbolen.

Integrale und aktuell gemessene Parameter sowie aus dem Messgerätarchiv gelesene Daten und im Kapitel "Betriebsablauf" aufgeführte Konfigurationsinformationen werden angezeigt.

Energiemesseinheiten (bei Installation vom Benutzer wählbar): kWh, MWh, Gcal oder GJ

Auflösung der Energieanzeigen (bei Installation vom Benutzer wählbar): 0000000,1 kWh

00000001 kWh

00000,001 MWh (Gcal oder GJ) 000000,01 MWh (Gcal oder GJ)

Auflösung der Durchflussratenanzeigen: 00000,001 m³

Im Falle einer entladenen oder abgeklemmten Batterie werden alle integralen Messwerte und Archivdaten mindestens 15 Jahre lang gespeichert und können durch Anschluss einer Batterie unter Betriebsbedingungen abgerufen werden.

Datenaufzeichnung und -speicherung

Im internen Speicher legt das Messgerät ein Archiv von stündlich, täglich und monatlich gemessenen Parametern an. Archivdaten können nur mit Hilfe von Fernabfrageeinrichtungen ausgelesen werden (siehe Abschnitt "Darstellung von Daten"). Die monatlich archivierten Parameterdaten, die auch zusätzlich auf dem Display angezeigt werden, sind in Kapitel "Betriebsablauf - Ansicht der Messwerte im Betriebsmodus (Benutzermenü)" aufgeführt.

Die folgenden Parameter werden für jede Stunde, jeden Tag und jeden Monat in Speicher des Messgeräts abgelegt:

1	Integrale Energie
2	Integrale Kühlenergie
3	Integrale Energie, Tarif 1
4	Integrale Energie, Tarif 2
5	Integrales Wärmeträgervolumen
6	Integraler Wert von Impulseingang 1
7	Integraler Wert von Impulseingang 2
8	Wert und Datum der Maximalleistung
9	Minimaler (oder max. Kühl-) Leistungswert und Datum
10	Wert und Datum der max. Durchflussrate
11	Maximaler Temperaturwert und Datum des Zulaufwärmeträgers
12	Maximaler Temperaturwert und Datum des Rücklaufwärmeträgers
13	Minimaler Temperaturwert und Datum des Zulaufwärmeträgers
14	Minimaler Temperaturwert und Datum des Rücklaufwärmeträgers
15	Min. aufgezeichnete Temperaturdifferenz und Datum
16	Durchschnittlicher Temperaturwert und Datum des Zulaufwärmeträgers
17	Durchschnittlicher Temperaturwert und Datum des Rücklaufwärmeträgers
18	Berechnungsfehlerzeit bei stromlosem Betrieb
19	Zusammenfassung der Fehlercodes
20	Zeitpunkt, zu dem die Durchflussrate höher als 1,2 qs lag
21	Zeitpunkt, zu dem die Durchflussrate unter q _i lag

Archivkapazität, Minimum:

Stunden für Archiveinträge: 1480 Std.
Tage für Archiveinträge: 1130 Tage
Monate für Archiveinträge: 36 Monate

Speicherzeit für Archivdaten: mindestens 36 Monate

Speicherzeit für alle gemessenen integralen Daten, auch ohne Stromversorgung der Elektronikeinheit: mindestens 15 Jahre

Externe Kommunikationsschnittstellen

Optische Schnittstelle (immer enthalten, unabhängig von der Bestellung)

Bestellte Schnittstelle (Angabe bei Bestellung des Messgeräts; beide Optionen können gewählt werden):

- M-Bus-Schnittstelle
- RF-868-MHz-Schnittstelle

Zusätzliche Schnittstelle (je nach Bestellung; nur eine Option aus der Liste ist möglich):

- M-Bus-Schnittstelle
- · CL (Stromschleife)-Schnittstelle
- ModBus®-RS485-Schnittstelle
- MiniBus-Schnittstelle

Die Schnittstellen dienen zum Auslesen der Daten und zur Parametereingabe. Wenn das Messgerät so konfiguriert ist, dass der Betrieb nur durch die interne Batterie erfolgt, wird die Kommunikationszeit durch die zusätzlichen Schnittstellen automatisch begrenzt, um die Batterie zu schonen – 16 Stunden pro Monat im Durchschnitt. Die nicht verbrauchte Kommunikationszeit wird aufsummiert. Wenn die Zeit verbraucht ist, wird die Schnittstelle gesperrt und die Aufsummierung eines neuen Zeitlimits beginnt mit der neuen Stunde (80 Sekunden pro Stunde).

Für mit Kabel anzuschließende Schnittstellen steht ein 1,5 m langes Kabel am Messgerät zur Verfügung.

Die optische Schnittstelle ist in die vordere Bedientafel der Elektronikeinheit integriert und dient dazu, Daten über das M-Bus-Protokoll auszulesen, Parameterwerte einzugeben und Impulse im Testmodus auszugeben. Sie wird durch Drücken der Taste aktiviert (5 Minuten nach dem Ende der Kommunikation, oder sie wird automatisch nach dem Drücken der Taste deaktiviert).

Impulsausgänge

Anzahl der Impulsausgänge: 2 oder keine (beim Bestellen angeben)

Klasse: OB – im Betriebsmodus

OD – im Testmodustyp:

Zulässige Stromstärke:

Spannung:

Open Collector
bis zu 20 mA
bis zu 24 V

Impulsdauer: 125 ms – im Betriebsmodus 1,2 ms – im Testmodus

Impulswert im Betriebsmodus:

• Wenn der Ausgang für Energie konfiguriert ist, kann der Wert der Impulse aus der Liste gewählt werden (je nach Nenndurchfluss qp und Energiemesseinheiten):

Permanente Durchflussrate, q _p , m ³ /h	0,6 - 6	10 – 60
Energieimpulswert, wenn Einheit "kWh" oder "MWh" ist	0,001; 0,01; 0,1; 1; 10 MWh/imp	0,01; 0,1; 1; 10 MWh/imp
Energieimpulswert, wenn Einheit "GJ" ist	0,001; 0,01; 0,1; 1; 10 GJ/imp	0,01; 0,1; 1; 10 GJ/imp
Energieimpulswert, wenn Einheit "Gcal" ist	0,001; 0,01; 0,1; 1; 10 Gcal/imp	0,01; 0,1; 1; 10 Gcal/imp

 Wenn der Ausgang für Wassermenge konfiguriert ist, kann der Wert der Impulse aus der Liste gewählt werden (je nach Permanentdurchfluss qp):

Permanente Durchflussrate, q _p , m ³ /h	0,6 - 6	10 - 60
Wasservolumen-Impulswert, m³/Imp	0,001; 0,01; 0,1; 1; 10	0,01, 0,1, 1; 10

Wenn das Messgerät mit der Funktion "Impulseingang/-ausgang" bestellt wird, ist ein permanent angeschlossenes,
 1,5 m langes Kabel am Messgerät vorhanden, an das die Ein-/Ausgänge angeschlossen werden können.

Messgerät-Stromversorgung

(eine der Optionen, je nach Messgerät-Konfiguration):

- Eine oder zwei interne 3,6-V-Lithium (Li-SOCl2)-Batterie(n) (Größe AA) mit einer Lebensdauer von mindestens 15+1 Jahren,
- Oder eine externe 12–42-V-DC- oder 12–36-V-AC-Spannung (50/60-Hz); Stromaufnahme max. 20 mA,
- Oder eine externe 230-V-AC +10% -15%-Spannung (50/60-Hz); Stromaufnahme max. 5 mA.

Gesamtabmessungen

Elektronikeinheit: Maximal 115 mm x 30 mm x 90 mm,

Durchflusssensoren: gemäß Anhang B

Gewicht des Messgeräts:

Anschlusstyp (und Länge) des Durchflusssensors	Gewicht des Messgeräts, maximal, kg
G3/4" (110 mm)	0,7
G3/4" (165 mm)	0,8
G1" (110 mm)	0,7
G1" (130 mm)	0,8
G1" (190 mm)	0,9
DN20 (190 mm)	2,5
G1 ¼"	3,2
G1 1/2"	3,3
DN25	5,6
DN32	6,0
G2"	3,7
DN40	6,8
DN50	8,5
DN65	13
DN80	15
DN100	18

Betriebsbedingungen

Schutzklasse der Elektronikeinheit: IP65 (IP67 oder IP68, kundenspezifisch)
Schutzklasse des Durchflusssensors: IP65 (IP67 oder IP68, kundenspezifisch)

Schutzklasse des Temperatursensors: IP68

Betriebsbedingungen:

Umgebungstemperatur 5 °C bis 55 °C
 Relative Luftfeuchtigkeit bis zu 93 %,

Luftdruck 86 kPa bis 106,7 kPa

Mechanische Umgebungsklasse: M1 Elektromagnetische Umgebungsklasse: E2

FUNKTIONSPRINZIP

Die Durchflussrate wird auf Basis des Ultraschallmessprinzips gemessen. Das Ultraschallsignal wird stromauf- und stromabwärts entlang des Durchflusssensors zwischen den Ultraschallsensoren gesendet, die abwechselnd die Rolle von Sender und Empfänger übernehmen. Die Durchflussrate wird auf Basis des gemessenen Laufzeitunterschieds Ultraschallmessprinzips berechnet (stromab- und stromaufwärts).

Die Temperaturdifferenz zwischen Zulauf und Rücklauf wird von resistiven Temperatursensoren gemessen. Die Elektronikeinheit berechnet die Menge der verbrauchten Wärmeenergie durch Integration der Zeitdifferenz der Enthalpien von Zulauf- und Rücklaufwärmeträger und zeigt die Daten auf dem Display an.

Formeln zur Energieberechnung:

- Wenn sich der Durchflusssensor in der Zulaufleitung befindet: $Q = V * \rho_1 * (hT_1 hT_2)$
- Wenn sich der Durchflusssensor in der Rücklaufleitung befindet: $Q = V * \rho_3 * (hT_1 hT_2)$

Wobei:

Q = Wärmeenergie;

V = Volumen des durch das Messgerät strömenden Wassers, m³;

 ho_1 , ho_2 = Wasserdichte entsprechend der Zulaufund Rücklaufwärmeträgertemperaturen Θ 1 und Θ 2, gemessen von den Zulauf- und Rücklaufwärmeträgertemperatursensoren T1 und T2;

 hT_{1} , hT_{2} = berechnete spezifische Enthalpie des Wärmeträgers für die Temperaturen $\Theta1 - \Theta2$.

Wenn bei aktivierter Kühlenergietariffunktion das Temperaturdifferenzial negativ ist, wird die Energie im zusätzlichen Tarifregister Q_□ gespeichert In diesem Fall werden die Energiewerte gemäß der folgenden Formeln berechnet:

• Wenn sich der Durchflusssensor in der Zulaufleitung befindet und $\Theta1 > \Theta2$: $Q = V * \rho_1 * (hT_1 - hT_2)$, $Q_{\circlearrowleft} = 0$, wenn $\Theta1 < \Theta2$: $Q_{\circlearrowleft} = V * \rho_1 * (hT_2 - hT_1)$, Q = 0

• Wenn sich der Durchflusssensor in der Rücklaufleitung

befindet und
$$\Theta1 > \Theta2$$
: $Q = V * \rho_2 * (hT_1 - hT_2)$, $Q_{\odot} = 0$, wenn $\Theta1 < \Theta2$:

$$Q_{\odot} = V * \rho_{2} * (hT_{2}-hT_{1}), Q = 0$$

Die Elektronikeinheit des Wärmezählers führt alle notwendigen Messungen und Datenspeicherfunktionen aus:

- Messung der Wärmeenergie und Festlegung der Überlasteigenschaften;
- Berechnung und Speicherung der Maximalwerte;
- Lagerung der für die monatlich und jährlich eingestellten Tagesberichte erforderlichen Daten;
- Messung des Verbrauchs im Rahmen der Tarife;
- Speicherung von 36-Monats-Werten, einschließlich der berechneten Energie, des Volumens und Tarifspeichers;
- Bestimmung von Fehlern;
- Anzeige von Werten, Parametern (wahlweise Anzeige) und Fehlercodes;
- Test- und Wartungsfunktionen

KENNZEICHNUNG UND VERSIEGELUNG

Kennzeichnung

Folgendes wird auf der vorderen Bedientafel der Elektronikeinheit des Messgeräts angezeigt: Warenzeichen des Herstellers, Typ und Typnummer des Messgeräts, EU – Typenprüfnummer, Werksnummer, Herstellungsjahr, Temperaturmessbereich, Temperaturdifferenzmessbereich, Genauigkeit, Umgebungsklasse gemäß LST EN1434-1, elektromagnetisch und mechanische Umgebungsklasse, Durchflussmessbereich (qi, qp, qs), Temperaturbereich für die Sensoren, max. zulässiger Arbeitsdruck, Typen von Kommunikationsschnittstellen (außer den optischen) und Versorgungsspannung (bei externer Stromversorgung).

Folgendes wird auf dem Gehäuse des Durchflusssensors angezeigt:

- Anschlusstyp (Gewinde oder relativer Durchmesser)
- Durchflussrichtung

Der Einsatzzweck der Drahtkommunikationsschnittstellen und die zusätzlichen Ein- und Ausgänge und Drähte der externen Stromkabel sind mit der Farbe der Kabeldrähte und einer zusätzlichen Beschriftung am Kabel, die den Einsatzzweck angibt, gekennzeichnet.

Der für die Montage in der Leitung für höhere Temperaturen eingebaute Temperatursensor ist mit einer roten Kennzeichnung versehen; der für die Montage in der Leitung für niedrigere Temperaturen eingebaute Temperatursensor ist mit einer blauen Kennzeichnung versehen.

Versiegelung des Messgeräts (Anhang C)

Versiegelung des Wärmezählerrechners

Bei einem neu hergestellten Wärmezähler gibt es keine zusätzliche Versiegelung der Elektronikeinheit. Der Zugang zu den Sicherungselementen für die Öffnung der Box, zu den Kontakten für die Änderung der Konfigurations- und Einstelldaten wird durch spezielle, einfach durchzubrechende Trennwände geschützt (Abbildung 1).

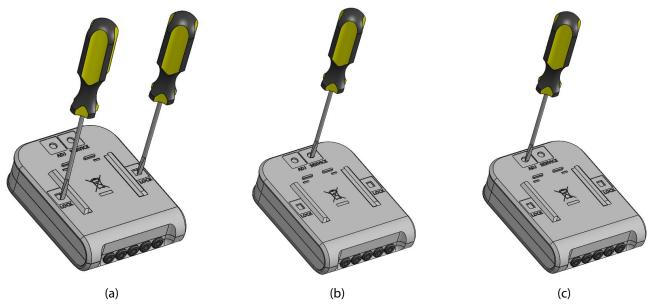


Abbildung 1: Zugang zu den Sicherungselementen für die Öffnung der Box (A), zu den Kontakten für die Änderung der Konfigurations- und Einstelldaten (C) (Trennwände lassen sich leicht mit einem Werkzeug durchbrechen)

Nach dem Öffnen der Box, der Änderung der Konfiguration oder der Einstellungen des Zählers (wenn die Spezialtrennwände zu diesem Zweck durchgebrochen wurden), müssen die Öffnungen zusätzlich mit Klebedichtungen abgedeckt werden:

- Die beiden mit LOCK beschrifteten Öffnungen für die Öffnung der Box werden mit den Testklebedichtungen abgedeckt (Abb. 1a),
- die mit SERVICE beschriftete Öffnung für den Zugang zu den Konfigurationsänderungskontakten wird mit der Klebedichtung des Herstellers abgedeckt (Abb. 1b),
- die mit ADJ beschriftete Öffnung für den Zugang zu den Einstellungsdatenänderungskontakten wird mit der Klebedichtung des Herstellers abgedeckt (Abb. 1c)

Versiegelung des Wärmezählerdurchflusssensors

Die Garantieklebedichtung des Herstellers wird angebracht – die Befestigungsschrauben der Schutzkappe werden abgedichtet (Abb. 20, Pos. 1)

Nach dem Einsetzen wird die Befestigungsschraube des Temperatursensors mit Montagedichtungen abgedichtet (Abb. 21).

EINBAUVERFAHREN

Allgemeine Anforderungen

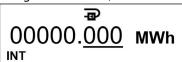
Vor dem Einbau des Messgeräts:

- Überprüfen, ob der komplette Messgerätsatz mit dem in der technischen Dokumentation beschriebenen übereinstimmt;
- Auf sichtbare, mechanische Defekte prüfen;
- Konfiguration des Messgeräts überprüfen und ggf. ändern.

Das Messgerät darf nur von qualifizierten Spezialisten in Übereinstimmung mit den Anforderungen in diesem Dokument und dem Einbaudesign des Messgeräts eingebaut werden.

Es ist nicht erlaubt, Signalkabel in der Nähe von (näher als 5 cm) Stromkabeln oder Kabeln anderer Geräte zu verlegen.

Konfiguration des Messgeräts überprüfen


Vor dem Einbau des Messgeräts muss überprüft werden, ob die Konfiguration die Anforderungen der spezifischen Anlage erfüllt; ist das nicht der Fall, muss sie geändert werden (wenn sich das Messgerät im Transportmodus befindet, kann die Konfiguration durch Drücken der Taste oder mit Hilfe der HEAT3_service-Konfigurationssoftware geändert werden, ohne die Messgerätstruktur oder die Dichtungen zu beschädigen). Die folgenden Parameter müssen überprüft werden (die Werkseinstellungen für das Messgerät entsprechen den Standardwerten):

- Ob das Messgerät in einer Zulauf- oder einer Rücklaufleitung eingebaut werden soll;
- Ob das Messgerät Wärmeenergie oder Wärme- und Kühlenergie messen soll;
- · Energiemesseinheiten;
- Angezeigte Energieauflösung (Kommastelle);
- Ob die Tarifregister aktiviert werden und die Funktionsbedingungen der Tarifregister;
- Ob die Impulseingänge aktiviert sind, ihr Zweck, die Impulswerte, die Anfangswerte und die Auflösung der Volumenregister (Kommastelle);
- Ob die Impulsausgänge aktiviert sind, ihr Zweck, die Impulswerte, die Anfangswerte und die Auflösung der Volumenregister (Kommastelle);
- Datum für Berichtsjahr und -monat;
- Die Abonnementsnummer;
- Die interne Uhrzeit;
- Adressen und Kommunikationsgeschwindigkeit der M-Bus-Schnittstelle

NHINWEIS: Der Transportmodus wird automatisch ausgeschaltet (die Möglichkeit zur Änderung der Konfigurationsparameter wird ausgeschaltet), wenn das Messgerät den Betrieb aufnimmt und der Volumenintegrator mehr als 1 Liter angesammelt hat. Der Transportmodus kann auch mit Hilfe der Taste (wie beim Einschalten des Testmodus) und mit der HEAT3 service-Konfigurationssoftware ausgeschaltet werden.

Vorgehensweise zur Überprüfung der Messgerätkonfiguration:

• Wenn sich das Messgerät im Transportmodus befindet, ist das Display im Standby-Status ausgeschaltet. Das Display wird durch Drücken der Taste eingeschaltet und, solange es sich im Transportmodus befindet, nach 5 Minuten ausgeschaltet (im normalen Betriebsmodus ist das Display dauerhaft eingeschaltet und zeigt den Wert der gemessenen Energie konstant an).

• Zur Überprüfung und Änderung der Konfiguration die Taste gedrückt halten, bis INF unten auf dem LCD-Display erscheint. Der Parameter wird durch kurzes Drücken der Taste gewählt (und bei Bedarf geändert):

LCD-Bild	Parameter	Änderungsmöglichkeit
←→	Wärmekapazität	
0,000 kW		
INF '		
←→ m³h	Durchflussrate	
0,000		
INF		
1 ←→ m³h	Temperatur T1	
0 °C		
INF		
2 ← → m³h	Temperatur T2	
0 °C		
INF		
1-2 ←→ m³h	Temperatur differenz T1-T2	
0,0 ℃		
INF		
←→ 壺	Einbauort	Ja*
SEt. 0, <u>000</u> MWh	Wärme- oder Wärme-/Kühlzähler Energiemesseinheiten und Kommastelle	Ja* Ja*
INF *	Energiemessenmenten und Kommustene	Ju
←→	Enddatum der Batterielebensdauer	
b: 2027,03		
INF		
←→	Datum (Jahr.Monat.Tag)	Ja
2017.07.24		
INF		
←→	Uhrzeit (Stunde-Minute-Sekunde)	Ja
15-07-32		
INF		
←→	Jahresberichtsdatum (Montag.Tag)	Ja
01. 32		
INF		
←→	Monatsberichtsdatum	Ja
31		
INF		
1	Parameter des 1. Tarifs	Ja
L1 0.0 °C	Parameterwert Parameterbedingung	
INF MAX	. arameter bearing and	

1	Parameter des 2. Tarifs	Ja
L2 0.0 °c	Parameterwert	
INF MAX	Parameterbedingung	
1 ←→ m³	Modus des 1. Impulsein-/ausgangs	Ja
ln 0.001	Impulswert	
INF		
_2	Modus des 2. Impulsein-/ausgangs	Ja
ln 0.001	Impulswert	
INF		
1 ←→ m³h	Anfangswert des 1. Impulseingangs	Ja*
00000,000	Kommastelle des 1. Impulseingangs	
INF		
2 ←→ m³h	Anfangswert des 2. Impulseingangs	Ja*
00000,000	Kommastelle des 2. Impulseingangs	
INF		
1 ←→ 1	Anfangsadresse des M-Bus-Protokolls der 1. Kabelschnittstelle	Ja*
buSA 1	Rubelsellintistelle	
INF		1.4
1 ←→ 2400E bDC	Kommunikationsgeschwindigkeit der 1. Kabelschnittstelle, Bits pro Sekunde (E – Parität	Ja*
2400E bPS	Gerade)	
INF 2 ←→	Anfangsadresse des M-Bus-Protokolls der 2.	Ja*
buSA 1	Kabelschnittstelle	Ja
INF		
2 ←→	Kommunikationsgeschwindigkeit der 2.	Ja*
2400E bPS	Kabelschnittstelle, Bits pro Sekunde (E – Parität	
INF	Gerade)	
←→	Wärmeträgertyp (Wasser)	
H:		
INF		
←→	Abonnementsnummer	Ja
C: 0000000		
INF		
←→	Softwareversionsnummer	
SoFt 0.01		
INF		
←→	Werks- (Serien-) nummer des Messgeräts	
0000000		
INF		

←→ 0000000.0 h	Fehlerfreie Betriebszeit des Messgeräts	
b:0000000 h	Gesamtbetriebszeit des Messgeräts	
tESt on Wh	Zur Aktivierung des Testmodus und der Ausgabe von Energieimpulsen durch die optische Schnittstelle	Ja**
tESt on	Zur Aktivierung des Testmodus und der Ausgabe von Volumenimpulsen durch die optische Schnittstelle	Ja**
←→ InStALL INF	Zur Aktivierung des RF-Schnittstellen- Installationsmodus durch Drücken der Taste (drücken und halten)	Ja**

HINWEIS:

- 1) Das Symbol ← → zeigt, dass sich das Messgerät im Transportmodus befindet.
- 2) *Die markierten Parameter werden nur im Transportmodus angezeigt
- 3) **Die markierten Parameter können auch im normalen Betriebsmodus geändert werden

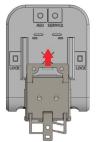
Änderung der Messgerätkonfiguration

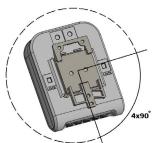
Die im Abschnitt "Konfiguration des Messgeräts überprüfen" markierten Parameter können mit dem Konfigurationsprogramm HEAT3_service (oder mit den Tasten, wenn sich das Messgerät im Transportmodus befindet) geändert werden. Wenn der Transportmodus ausgeschaltet ist, muss zum Ändern der Parameter (außer bei Typ der Energiemessung, Messeinheiten und Einbauort) der Schlitz SERVICE auf der Rückseite der Elektronikeinheit durch Durchbrechen der Trennwand geöffnet und die inneren Kontakte kurzgeschlossen werden ("TEST" wird angezeigt). Durch wiederholtes Kurzschließen der Kontakte wird die Konfigurationsfunktion nach erfolgter Konfiguration ausgeschaltet, und der Schlitz muss mit einer Klebedichtung verschlossen werden.

Elektrische Verkabelung

Wenn das Messgerät von einer externen Stromquelle mit 230 V AC oder 24 V AC/DC betrieben werden soll, muss das Kabel des Messgeräts, das für diesen Zweck gedacht und entsprechend markiert ist mit der jeweiligen Quelle verbunden werden (siehe Anhang A).

Wenn das Messgerät mit Kabelschnittstellen oder der "Impulsein-/ausgabefunktion" ausgestattet ist, muss die für diesen Zweck gedachten und entsprechend markierten Kabel mit der jeweiligen externen Vorrichtung verbunden werden (siehe Anhang A).


Installation


Montage des Rechenwerks

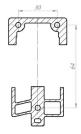
Die Elektronikeinheit (Rechenwerk) des Messgeräts ist in einem beheizten Raum eingebaut. Die Temperatur der Arbeitsumgebung darf 55 °C nicht überschreiten. Die Einheit darf keiner direkten Sonneneinstrahlung ausgesetzt werden.

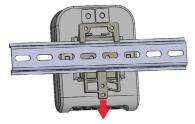
Für den freien Raum um das Messgerät herum bestehen keine besonderen Anforderungen. Es ist wichtig, dass Installationen oder Strukturen in der Nähe das Gehäuse des Messgeräts nicht berühren, die Verlegung von Kabeln nicht behindern und das Ablesen der Daten auf dem Display nicht verhindern. Das Messgerät muss in einem sicheren Abstand zu anderen Geräten aufgestellt werden, die Wärme oder starke elektromagnetische Felder abstrahlen (um eine Störung der Arbeitsbedingungen zu vermeiden).

Die Elektronikeinheit ist auf einer Haltevorrichtung montiert (sie lässt sich in einem Winkel von jeweils 90° in jede Richtung drehen):

Mögliche Optionen für die Montage der Elektronikeinheit (Haltevorrichtung):

Direkte Montage am Gehäuse des Durchflusssensors durch Drehung um 90° (nur, wenn die Durchflusstemperatur 90





An einer Wand:

im Schaltschrank auf einer standardmäßigen DIN-Schiene:

WICHTIG: Es ist nicht gestattet, die Elektronikeinheit direkt an der Wand zu montieren, da die Gefahr besteht, dass Feuchtigkeit auf den Wänden kondensiert oder die Temperatur auf der Wandoberfläche unter 5 °C fällt. In diesem Fall wird empfohlen, die Elektronikeinheit so zu montieren, dass ein Luftspalt von mindestens 5 cm zwischen Einheit und Wandoberfläche besteht.

Montage der Durchflusssensoren

Die Installations- und Gesamtabmessungen der primären Durchflusssensoren sind in Anhang B aufgeführt

Beim Einbau einer Rohrleitung müssen die folgenden Längen von geraden Abschnitten für Sensoren, die mit den Flanschen DN65, DN80 und DN100 angeschlossen werden, eingehalten werden: Stromaufwärts vom Sensor – mind. 5DN; stromabwärts vom Sensor – mind. 3DN. Für Durchflusssensoren anderer Anschlusstypen sind keine geraden Abschnitte stromaufwärts oder stromabwärts vom Sensor erforderlich.

Es wird empfohlen, Durchflusssensoren in Rohrleitungen so weit wie möglich entfernt von Pumpen, Trennwänden und 90°-Bögen einzubauen.

Durchflusssensoren können horizontal, vertikal oder schräg eingebaut werden. Obligatorische Bedingung: Im Betriebsmodus muss die Rohrleitung einen Druck von nicht weniger als 30 kPa aufweisen und vollständig mit Wasser gefüllt sein.

In Bezug auf die Längsachse der Rohrleitung können Durchflusssensoren des Anschlusstyps G3/G4, G1 oder DN20 in einem beliebigen Winkel montiert werden (Abb. 2 a); Durchflusssensoren anderer Anschlusstypen können in den in Abb. 2b angegebenen Positionen montiert werden (es ist nicht erlaubt, dass die Durchflusssensorabdeckung vertikal ausgerichtet wird).

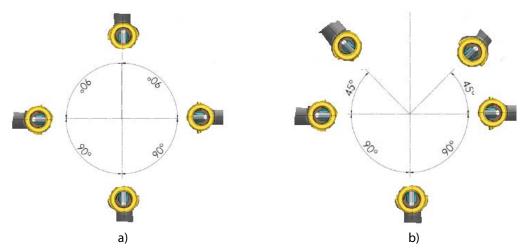
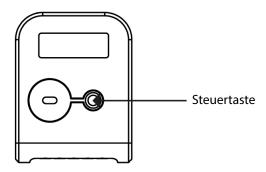


Abbildung 2: Erlaubte Einbaupositionen des Durchflusssensors

Die Durchflussrichtung muss mit der Richtung des Pfeils auf dem Durchflusssensor übereinstimmen. Der Durchflusssensor kann entweder auf der Zulauf- oder der Rücklaufleitung installiert werden, je nach Angabe auf der Beschriftung des Messgeräts. Vor der Installation des Sensors muss die Rohrleitung des Heizsystems am Einbauort des Sensors gespült werden. Um eine zu hohe Belastung in den Rohrleitungen zu vermeiden, muss der Abstand zwischen den Flanschen am Einbauort des Durchflusssensors der Gesamtlänge des Sensors in Bezug auf die Stärke der Dichtungen entsprechen. Es wird empfohlen, den Einbauort des Durchflusssensors so weit weg wie möglich von potenziellen Vibrationsquellen (z. B. Pumpen) zu wählen. Beim Einbau der Sensoren darauf achten, dass die Dichtungen nicht auf der Innenseite in die Rohleitung hineinragen. Es ist nicht erlaubt, die Kabel des Durchflusssensors in der Nähe von (näher als 5 cm) Stromkabeln oder Kabeln anderer Geräte zu verlegen.

Einbau der Temperatursensoren

Die Temperatursensoren werden so eingebaut, dass ihre Platzierungsköpfe nach oben zeigen, und zwar senkrecht zur Rohrachse oder in einem Winkel von 45° zur Flussrichtung, so dass der Fühler in das zu messende Medium bis mindestens zur Mitte des Rohrdurchmessers eingetaucht ist (siehe die Abbildungen in Anhang C). Wenn das Messgerät mit Durchflusssensoren und den Flanschen G3/4", G1" und G1 ¼" ausgestattet ist, wird ein Temperatursensor im Gehäuse des Durchflusssensors installiert. Es ist nicht erlaubt, die Kabel der Temperatursensoren in der Nähe von (näher als 5 cm) Stromkabeln oder Kabeln anderer Geräte zu verlegen.


Überprüfung der Installation und Parametereingabe

Wenn das Messgerät (Rechenwerk, Durchfluss- und Temperatursensoren) korrekt installiert sind und ein Durchfluss stattfindet, muss das Display des Messgerät die Durchfluss- und Temperaturmesswerte anzeigen. Wenn die Werte der gemessenen Kanäle nicht angezeigt werden, muss die Installation der Stromkreise überprüft werden.

BETRIEBSABLAUF

Steuerung

Die Darstellung der gemessenen Daten und Informationen auf dem Display wird mit der Steuertaste am oberen Teil der Elektronikeinheit ausgewählt.

Darstellung der Daten

Die Daten werden auf einem 8-stelligen LCD-Display mit Spezialsymbolen für die Darstellung von Parametern, Messeinheiten und Betriebsmodi dargestellt:

Bei bestehendem Durchfluss (in der richtigen Richtung) wird dieser durch einen Pfeil → angezeigt; wenn der Durchfluss in entgegengesetzter Richtung stattfindet, wird dies durch den Pfeil ← angezeigt. Wenn kein Durchfluss stattfindet, wird kein Pfeil angezeigt. Die Bedeutung der anderen Symbole wird im Abschnitt "Menüstruktur" erklärt.

Die folgenden Informationen können angezeigt werden:

- Die Werte der integralen und momentan gemessenen Parameter (wenn das Symbol INT angezeigt wird),
- Die Daten der monatlichen Archive und die Daten des Berichtstages (wenn das Symbol BIL angezeigt wird),
- Information über die Gerätekonfiguration (wenn das Symbol INF angezeigt wird)

Die verbrauchte Wärmeenergie wird konstant angezeigt. Andere Daten werden nach Drücken der Steuertaste auf dem Display angezeigt.

Wenn das Messgerät für die Installation in der Zulaufleitung konfiguriert ist, wird das Symbol angezeigt; wenn das Messgerät für die Installation in der Rücklaufleitung konfiguriert ist, wird das Symbol angezeigt.

Das Symbol wird angezeigt, wenn ein schwerwiegender Betriebsfehler vorliegt (aufgrund dessen die Aufsummierung der Energie oder die normale Arbeitszeit unterbrochen wurde). Für den Fehlercode siehe den Eintrag 1.12 im LCD-Menü im Abschnitt "Menüstruktur".

Menüstruktur

Das Diagramm der Werteüberprüfung der Elektronikeinheit im Betriebsmodus wird in Abb. 3 dargestellt. Die wichtigsten integralen Messwerte (1.2) oder Fehler (1.1) werden immer angezeigt, wenn die Taste länger als 60 s nicht gedrückt wurde.

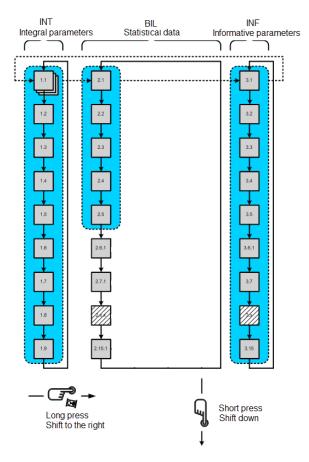


Abbildung 3: Diagramm der Werteüberprüfung im Betriebsmodus.

Anzeige der Messwerte im Betriebsmodus (Benutzer-Menü)

HINWEIS: Dies ist eine vollständige Liste der dargestellten Parameter. Sie kann zur Vereinfachung der Bedienung durch den Benutzer bei bestimmten Messgeräten verkürzt sein.

ID	Parameter	Wert	Hinweise
1.1	Integrale Wärmeenergie	00000.000 MWh	
1.2	Integrale Kühlenergie	10 0000.000 MWh	
1.3	Integrale Energie, Tarif 1	1	Bei einem kombinierten Gerät zeigt die "Schneeflocke" an, dass der Tarif mit einem Kühlenergiezähler verbunden ist

1.4	Integrale Energie, Tarif 2	2	/h ∣t	ei einem kombinierten Gerät zeigt lie "Schneeflocke" an, dass der arif mit einem Kühlenergiezähler erbunden ist
1.5	Integrales Wärmeträgervolumen	00000.000 m³		
1.6	Integrales Volumen von Impulseingang 1	1		
1.7	Integrales Volumen von Impulseingang 2	2		
1.8	Segmenttest	1-2 3 ↔ M B TEST m³/h GJcal MkWh INTBILINF MAXMIN * △	Ä	ndert sich jede Sekunde
1.9	Berechnungsfehlerzeit bei stromlosem Betrieb	⊕ 00000. <u>00</u> int	h	
1.10	Benutzer- identifikations- nummer	C:0000000		timmt mit der Sekundäradresse ler M-Bus-Schnittstelle überein
1.11	Nummer überprüfen	0000 INT		
1.12	Fehlercode und Fehlerauftrittsdatum	Er: 0001	E W v je F	Venn kein Fehler vorliegt, wird nur r angezeigt: 0000 Venn ein kritischer Fehler orliegt, ändern sich die Bilder ede Sekunde: Fehlercode und ehlerauftrittsdatum Die Fehlercodewerte werden im ubschnitt "Fehlercodes" erklärt.

		1		
2.1	Integrale Energie und Datum Abrechnungstag	00000. <u>000</u>	MWh	Ändert sich jede Sekunde
		2017.01.01		
2.2	Integrale Kühlenergie und Datum am Abrechnungstag	00000. <u>000</u>	MWh	Ändert sich jede Sekunde
		2017.01.01		
2.3	Integrale Energie und Datum nach Tarif 1 am Abrechnungstag	1 00000. <u>000</u> BIL	MWh	Ändert sich jede Sekunde
		2017.01.01		
2.4	Integrale Energie und Datum nach Tarif 2 am Abrechnungstag	00000. <u>000</u>	MWh	Ändert sich jede Sekunde
		2017.01.01		
2.5	Integrales Wärmeträgervolumen und Datum am Abrechnungstag	00000. <u>000</u>	m³	Ändert sich jede Sekunde
		2017.01.01		
2.6	Integraler Wert von Impulseingang 1 und Datum am Abrechnungstag	1 00000. <u>000</u> BIL	m³	Ändert sich jede Sekunde
		2017.01.01		

2.7	Integraler Wert von Impulseingang 2 und Datum am Abrechnungstag	00000. <u>000</u>	m³	Ändert sich jede Sekunde
		2017.01.01		
2.8	Integrale Energie und Datum im vorherigen Monat	00000. <u>000</u>	MWh	Ändert sich jede Sekunde
		2017.01.01		
2.9	Integrale Energie und Datum im vorherigen Monat	00000. <u>000</u>	MWh	Ändert sich jede Sekunde
		2017.01.01		
2.10	Integrale Energie und Datum nach Tarif 1 im vorherigen Monat	1 00000.000	MWh	Ändert sich jede Sekunde
		2017.01.01		
2.11	Integrale Energie und Datum nach Tarif 2 im vorherigen Monat	00000. <u>000</u>	MWh	Ändert sich jede Sekunde
		2017.01.01		
2.12	Integrales Wärmeträgervolumen und Datum im vorherigen Monat	00000. <u>000</u>	m³	Ändert sich jede Sekunde
		2017.01.01		

2.13	Integraler Wert von Impulseingang 1 und Datum im vorherigen Monat	00000. <u>000</u>		Ändert sich jede Sekunde
		2017.01.01		
2.14	Integraler Wert von Impulseingang 2 und Datum im vorherigen Monat	00000. <u>000</u>	m³	Ändert sich jede Sekunde
		2017.01.01		
2.15	Maximaler Stromwert und Datum im vorherigen Monat	0.000 bil max	kW	Ändert sich jede Sekunde
		2017.01.01		
2.16	Minimaler Stromwert (oder max. Kühlung) und Datum im vorherigen Monat	O.OOO BIL MIN	kW	Ändert sich jede Sekunde
		₽ 2017.01.01 BIL		
2.17	Maximale Durchflussrate und Datum im vorherigen Monat	O,000 BIL MAX	m³/h	Ändert sich jede Sekunde
		2017.01.01		
2.18	Maximaler Temperaturwert des Zulaufwärmeträgers und Datum im vorherigen Monat	1 M 0.0 °C BIL MAX	•	Ändert sich jede Sekunde
		2017.01.01		

2.19	Maximaler Temperaturwert des Rücklaufwärmeträgers und Datum im vorherigen Monat	2 M 0.0 °C BIL MAX 2017.01.01	Ändert sich jede Sekunde
2.20	Aufgezeichnetes max. Temperaturdifferenzial im vorherigen Monat	1-2 M 0.0 °C BIL MAX 2017.01.01 BIL	Ändert sich jede Sekunde
2.21	Minimaler Temperaturwert des Zulaufwärmeträgers und Datum im vorherigen Monat	1 M 0.0 °C BIL MIN 2017.01.01	Ändert sich jede Sekunde
2.22	Minimaler Temperaturwert des Rücklaufwärmeträgers und Datum im vorherigen Monat	2 M 0.0 °C BIL MIN 2017.01.01 BIL	Ändert sich jede Sekunde
2.23	Min. aufgezeichnete Temperaturdifferenz und Datum im vorherigen Monat	1-2 M 0.0 °C BIL MIN 2017.01.01 BIL	Ändert sich jede Sekunde
2.24	Aufgezeichnete Daten und Daten der vorherigen Monate, ähnlich zu 2.8 – 2.23 (bis zu 36 vorherige Monate)		Bei der Installation des Messgeräts kann gewählt werden, ob die Anzeige der Werte nur für den letzten, die beiden letzten oder alle 36 Monate erfolgt*

3.1	Thermostrom		
		0.000 kW	
3.2	Wärmeträgerdurchflussrate	0,000 INF	
3.3	Temperatur des Zulaufwärmeträgers	1 0 °C	
3.4	Temperatur des Rücklaufwärmeträgers	o °C	
3.5	Temperaturdifferenz	0.0 °C	
3.6	Nächstes Batterieaustauschdatum	b: 2027,03	
3.7	Aktuelles Gerätedatum (Echtzeitkalender)	2017.07.24 INF	
3.8	Aktuelles Gerätedatum (Echtzeit)	15-07-32	
3.9	Jahresberichtsdatum	←→ 01. 31	
3.10	Monatsberichtsdatum	←→ 31 INF	

	I	1	T
3.11	Konfiguration Tarif 1	Beispiel für Tarif 1, wenn T1-T2 < 10,0°C:	Mögliche Einstellung:
		1-2	Einer der gemessenen Parameter,
			Impulseingang 1 oder 2 (wenn als Eingang konfiguriert),
		L1 10.0 °C	eine der Temperaturen oder
		INF MAX	Temperaturdifferenzial.
		wenn >10,0 °C:	
		1-2	
		L1 10.0 °C	
		INF MIN	
		wenn innerhalb des Bereichs von 10,0	
		bis 40,0°C (ändert sich jede Sekunde):	
		1-2	
		L1	
		INF MIN	
		1-2	
		L1 40.0 °C	
		INF MAX	
		wenn das Zeitintervall auf Stunden eingestellt ist (07-23 Std.):	
		1-2	
		L1 07-32 h	
		INF MAX	
3.12	Konfiguration Tarif 2	Ähnlich wie Tarif 1, nur "L1" ändert sich	Ähnlich wie Tarif 1
3.12	Romiguration ram 2	auf "L2"	Allilleri Wie Tarii T
3.13	Konfiguration des 1.	Eingang (Volumenimpulse):	Eingänge können so konfiguriert
	Impulsein-/ausgangs	1 m ³	werden, dass sie nur die Wassermenge steuern (die max.
		ln 0.001 °C	Impulsauflösung wird auf dem
		INF	Bildschirm mit 0,000001 m ³
		Eingang (Tarifaktivierung):	angegeben) oder einen der Tarife.
		1 m ³	Ausgänge können auf die
		ln L2	Wassermenge (m³), die Wärme- (dargestellter Fall) oder Kühlenergie
			(zusätzlich – Schneeflocke)
		Augana (Energia):	konfiguriert werden oder den
		Ausgang (Energie):	Status der Tarife ausgeben.
		1	
		out 0.001 mwh	
		INF	
		Ausgang (Tarifstatus):	1
		1	
		out L1	
		INF	
	1	I.	I.

3,14	Konfiguration des 2. Impulsein-/ ausgangs	Ähnlich wie beim 1. Impulsein-/ ausgang, nur "1" ändert sich auf "2"	Ähnlich wie beim 1. Impulsein-/ ausgang
3,15	Kabelschnittstelle M-Bus 1 – Adresse	buSA 1	
3,16	Kabelschnittstelle M-Bus 1 – Geschwindigkeit	2400E bPS	Bits per Sekunde. "E" – Parität gerade
3,17	Kabelschnittstelle M-Bus 2 – Adresse	buSA 1	Wenn eine zweite Kabelschnittstelle vorhanden ist
3,18	Kabelschnittstelle M-Bus 2 – Geschwindigkeit	2400E bPS	Wenn eine zweite Kabelschnittstelle vorhanden ist, Bits pro Sekunde, "E" – Parität gerade
3,19	Wärmeträgertyp	H: INF	Wärmeträgertyp "" – Wasser
3,20	Wärmeträgertyp	C: 0000000	Übertragen in M-Bus-Telegrammen
3,21	Geräteprogramm- versionsnummer	Soft 0.01	
3,22	Gerätewerksnummer	0000000 INF	
3,23	Berechnungsfehlerzeit bei stromlosem Betrieb	0000000.0 h	
3,24	Batteriearbeitszeit	b:0000000 h	
3,25	Zur Aktivierung des Testmodus und der Ausgabe von Energieimpulsen durch die optische Schnittstelle	tESt on Wh	Durch Passwort geschützt (siehe Abschnitt "Testmodussteuerung > Aktivierung des Testmodus mit der Steuertaste")

3.26	Zur Aktivierung des Testmodus und der Ausgabe von Volumenimpulsen durch die optische Schnittstelle	tESt on	Durch Passwort geschützt (siehe Abschnitt "Testmodussteuerung > Aktivierung des Testmodus mit der Steuertaste")
3.27	Zur Aktivierung des RF-Schnittstellen- Installationsmodus durch Drücken der Taste (drücken und halten)	InStALL	Durch Passwort geschützt (siehe Abschnitt "Testmodussteuerung > Aktivierung des Testmodus mit der Steuertaste")

Die Anzeige der unwichtigen Parameter kann auch ausgeschaltet werden, für die Konfiguration des Messgeräts nicht relevante Daten werden dann nicht mehr angezeigt.

Die Anzeige von Parametern kann in der Konfigurationssoftware HEAT3-SERVICE über die optische Schnittstelle bei der Installation des Messgeräts (wenn sich das Messgerät im Transportmodus befindet) oder durch Anschließen der Kurzschlussbrücke SERVICE jederzeit ausgeschaltet werden.

Anzeige der Rechenwerkwerte im Testmodus

Das Diagramm der Werteüberprüfung des Rechenwerks im Testmodus wird in Abb. 4 dargestellt.

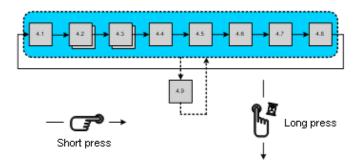
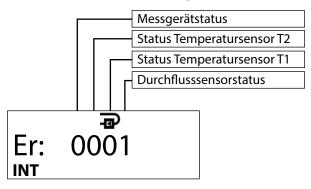


Abbildung 4: Diagramm der Werteüberprüfung der Elektronikeinheit im Testmodus.

Displayanzeigen im Testmodus


ID	Parameter	Wert		Hinweise	
4.1	Hochauflösende Energie	000000. <u>00</u>	Wh	Aktualisierung jede Sekunde Wird als "Pulse Wh" angezeigt, wenn der Energietestimpulsausgang aktiviert ist ("Impuls m""3" – bei	
		PULSE	Wh	Volumenimpulsausgang)	
4.2	Hochauflösendes integriertes Volumen	00,000000	m ³	Aktualisierung jede Sekunde Wird als "Pulse Wh" angezeigt, wenn der Energietestimpulsausgang aktiviert ist ("Impuls m""3" – bei	
		PULSE	Wh	Volumenimpulsausgang)	
4.3	Temperaturwert des Zulaufwärmeträgers	1 TEST 0.0	°C		

4.4	Temperaturwert des Rücklaufwärmeträgers	2	TEST 0.0	°C	
4.5	Temperaturdifferenz	1-2	0.00	°C	
4.6	Hochauflösende Durchflussrate	1-2	0.00	°C	
4.7	Zur Aktivierung des Energieimpulsausgangs (wenn der Volumen-Impulsausgang aktiviert ist)	tESt c	TEST ON	Wh	Aktivierung durch Gedrückthalten der Taste
	Zur Aktivierung des Volumenimpulsausgangs (wenn der Energie- Impulsausgang aktiviert ist)	tESt c	TEST ON	m³	Aktivierung durch Gedrückthalten der Taste
4.8	Zum Deaktivieren des Testmodus	TEST	TEST AUS		Aktivierung durch Gedrückthalten der Taste
4.9	SF" und die Durchflussrate werden angezeigt, wenn die Volumensimulation gestartet wurde*	SF ⁻	TEST 1.500	m³h	Ändert sich jede Sekunde mit ausgewähltem Parameter

Die Volumenimpulssimulation ist nur möglich, wenn der TEST-Modus durch Kurzschließen der SERVICE-Kontakte aktiviert wird. Die Durchflusssimulation wird durch Gedrückthalten der Taste gestartet. Nach dem Abschluss (in 2,5 Minuten) werden die Werte der simulierten Durchflussmenge und der entsprechenden Energie aufgezeichnet.

Fehlercodes

Fehler werden mit einem 4-stelligen Code codiert

Codename	Beschreibung
Status des Rechenwerks Er: 0001	0 - Normalbetrieb 1 - Batterielebensdauer ist abgelaufen (oder keine Stromzufuhr zum Messgerät – bei Vorhandensein einer externen Stromversorgung) 2 - Temperaturdifferenzial überschreitet den zulässigen Grenzwert 4 - Temperaturdifferenzial unterschreitet den zulässigen Grenzwert 8 - Hardwarefehler in der Elektronikeinheit *
Status des Rücklaufwärmeträger- Temperatursensors (T2) Er: 0001	0 - Normalbetrieb 4 - Sensor ist kurzgeschlossen * 8 - Sensor ist unterbrochen oder kurzgeschlossen *
Status des Zulaufwärmeträger- Temperatursensors (T1) Er: 0001	0 - Normalbetrieb 4 - Sensor ist kurzgeschlossen * 8 - Sensor ist unterbrochen oder kurzgeschlossen *
Status des Durchflusssensors Er: 0001	0 - Normalbetrieb 1 – kein Signal; der Durchflusssensor ist nicht mit Wasser gefüllt 2 - Rücklaufströmung 4 – der Durchfluss ist größer als 1,2·qs (Anzeige Q=1,2·qs) 8 - Hardwarefehler *

^{*} Die Summierung der Energie und der normalen Arbeitszeit wird nur bei Auftreten dieser schwerwiegenden Fehler gestoppt; der Fehlercode wird auf der ersten LCD-Bildschirmseite angezeigt; zusätzlich wird noch das Fehlerdatum angezeigt.

Fehlercodes werden summiert, wenn mehr als ein Fehler aufgetreten ist. Die Zusammenfassung der Fehlercodes sieht wie folgt aus:

- 3 entspricht Fehlercodes 2 + 1
- 5 entspricht Fehlercodes 4 + 1
- 7 entspricht Fehlercodes 4 + 2 + 1
- 9 entspricht Fehlercodes 8 + 1

A - entspricht Fehlercodes 8 + 2

B – entspricht Fehlercodes 8 + 2 + 1

C - entspricht Fehlercodes 8 + 4

D - entspricht Fehlercodes 8 + 4 + 1

E – entspricht Fehlercodes 8 + 4 + 2

F – entspricht Fehlercodes 8 + 4 + 2

Wenn mindestens eine Stelle in einem Fehlercode ≥ 8 ist, wird die Summierung von Energie, Wassermenge und störungsfreier Betriebszeit gestoppt.

Im Falle von Durchflusssensorfehler 4 wird außerdem die Zeit aufgezeichnet, während der "der Durchfluss q>1,2 qs" ist.

Testmodussteuerung

Spezifikationen des Testmodus

Der Testmodus (TEST) dient zum schnellen Testen.

Der Testmodus kann über die Steuertaste, über die optische Schnittstelle oder die Kurzschlussbrücke aktiviert werden.

Im Testmodus erfüllt das Messgerät folgende Funktionen:

- Anzeige der erhöhten Auflösungsenergie und Durchflusswerte;
- Erzeugung von Energie- oder Volumenimpulsen über die optische Schnittstelle;
- Erzeugung von Energieimpulsen am 1. Impulsausgang und Volumenimpulsen am 2 Impulsausgang (wenn das Messgerät mit einem Impulsein-/ausgangskabel ausgestattet ist);
- Simulation von Wasservolumen zur Bestimmung der Energiemessungsfehlertoleranz (nur, wenn Testmodus über die Kurzschlussbrücke aktiviert ist).

Die Auflösung der Energie- und Durchflussratenanzeigen im Testmodus (TEST) ist in Tabelle 2 dargestellt.

Ausgewählte Energiemesseinheiten	kWh, MWh	GJ	Gcal
Auflösung der Energieanzeige	000000,01 WH	0000000,1 KJ	0,000,000,1 KCAL
Auflösung der Volumenanzeige	00,000001 M3		

Tabelle 2: Auflösung der Energie- und Durchflussratenanzeigen im Testmodus

Die Werte der Energie- und Volumentestimpulse (über optische Schnittstelle und an den Impulsausgängen) sind, je nach permanentem Durchflussratenwert, in Tabelle 3 angegeben.

Durchflussratenwert, I/Impuls		Energieimpulswert, v	Energieimpulswert, wenn folgende Energiemesseinheiten gewählt sind:		
q _p , m³/h		kWh, MWh	GJ	Gcal	
0,6	0,002	0,1 Wh/Impuls	0,5 kJ/Impuls	0,1 kcal/Impuls	
1,0	0,002	0,2 Wh/Impuls	1 kJ/Impuls	0,2 kcal/Impuls	
1,5	0,004	0,2 Wh/Impuls	1 kJ/Impuls	0,2 kcal/Impuls	
2,5	0,005	0,5 Wh/Impuls	2 kJ/Impuls	0,5 kcal/Impuls	
3,5	0,02	1 Wh/Impuls	5 kJ/Impuls	1 kcal/Impuls	
6,0	0,02	1 Wh/Impuls	5 kJ/Impuls	1 kcal/Impuls	
10,0	0,05	2 Wh/Impuls	10 kJ/Impuls	2 kcal/Impuls	
15,0	0,05	5 Wh/Impuls	20 kJ/Impuls	5 kcal/Impuls	
25	0,05	5 Wh/Impuls	20 kJ/Impuls	5 kcal/Impuls	
40	0,2	10 Wh/Impuls	50 kJ/Impuls	10 kcal/Impuls	
60	0,2	10 Wh/Impuls	50 kJ/Impuls	10 kcal/Impuls	

Tabelle 3: Werte der Energie- und Volumentestimpulse (über optische Schnittstelle und an den Impulsausgängen), je nach permanentem Durchflussratenwert

Aktivierung des Testmodus mit der Steuertaste

Der Testmodus (TEST) kann mit der Taste aktiviert werden (oder über die optische Schnittstelle mit dem Programm HEAT3-SERVICE). In diesem Fall steht die Wasservolumensimulation nicht zur Verfügung. Daher stört der Testmodus den normalen Betriebsmodus nicht (gemessene Energie-/Volumenwerte werden in den Betriebsmodusregistern summiert).

Folgende Aktionen aktivieren den Testmodus:

- Gedrückthalten der Taste, Auswahl der Seite INF auf dem Display;
- Durch kurzes Drücken der Taste, Auswahl von "tESt on Wh" auf dem Display (zur Aktivierung des Energieimpulsausgangs über die optische Schnittstelle) oder "tESt on m³" (zur Aktivierung des Volumenimpulsausgangs über die optische Schnittstelle);
- Durch Gedrückhalten der Taste wird das Eingabefenster für das Sicherheitspasswort eingeschaltet:
- Durch Gedrückthalten der Taste* wird der Testmodus aktiviert (die Anzeige "TEST" erscheint oben auf dem Display)

NHINWEIS: Die Aktivierung des Testmodus über die Taste ist zusätzlich mit einem Passwort geschützt. Nach dem Drücken und

Festhalten der Taste, wird ein Eingabefenster für das vierstellige Passwort angezeigt, indem die erste Stelle blinkt:

Die erste Stelle wird durch kurzes Drücken der Taste gewählt. Die zweite Stelle beginnt nach dem Drücken und Festhalten der Taste zu blinken, dann wird die zweite Stelle auf dieselbe Weise gewählt usw. bis alle vier Stellen des Passworts eingegeben sind. Ist die Eingabe korrekt, erscheint kurzzeitig die Anzeige PASS nach Eingabe der vierten Stellen und Gedrückthalten der Taste, und das Messgerät schaltet in den Testmodus. Ist die Eingabe falsch, erscheint kurzzeitig die Anzeige FAIL, und das Messgerät schaltet zurück in den Betriebsmodus. Die Aktivierung muss dann von Beginn an wiederholt werden. Das voreingestellte Passwort ist: **0001**.

Aktivierung des Test – Servicemodus mit Kurzschlussbrücke und Steuertaste

Durch Kurzschließen der SERVICE-Kontakte (Durchbrechen der Trennwand auf der Rückseite der Elektronikeinheit des Messgeräts oder durch Entfernen der Schutzdichtung, wenn die Trennwand schon durchbrochen war), wird der SERVICE-Modus aktiviert und das Symbol "<->" angezeigt. Dieser Modus ermöglicht die Änderung der Konfigurationsparameter des Messgeräts ähnlich wie im Transportmodus (siehe Abschnitt "Einbauverfahren - Vorgehensweise zur Überprüfung der Messgerätkonfiguration").

In diesem Fall wird der Testmodus (TEST) mit der optischen Schnittstelle (mit dem Programm HEAT3-SERVICE) oder durch Drücken der Taste aktiviert:

- Durch kurzes Drücken der Taste, Auswahl von "tESt on Wh" auf dem Display (zur Aktivierung des Energieimpulsausgangs über die optische Schnittstelle) oder "tESt on m³" (zur Aktivierung des Volumenimpulsausgangs über die optische Schnittstelle);
- Durch Gedrückthalten der Taste den Testmodus aktivieren (die Anzeige "TEST" erscheint oben auf dem Display dies dauert 150 s).
- Möglichkeit der Servicekonfiguration.

Die im Abschnitt "Betriebsablauf - Aktivierung des Testmodus mit der Steuertaste" angegebenen Testmodusfunktionen werden aktiviert (die Volumenimpulsausgabe wird eingeschaltet). Auch die Möglichkeit zum Einschalten der Durchflusssimulation wird aktiviert (zur Bestimmung der Energiemessungsfehlertoleranz ohne tatsächlichen Durchfluss).

Zur Bestimmung der Energiemessungsfehlertoleranz wurde die Simulation von automatischen Durchflussimpulsen entwickelt: Wird die Taste im Testmodus länger als 5 Sekunden gedrückt gehalten, wird die Durchflussmessung beendet und die nominelle Durchflussimpulssimulation gestartet (auf dem Display erscheint periodisch die Anzeige "SF"). Nach 2,5 Minuten endet die Simulation, die Anzeige "SF" verschwindet, und die summierten Werte für Durchflussvolumen und Energie kann ausgelesen und zur Bestimmung der Energiemessungsfehlertoleranz verwendet werden.

Deaktivierung des Test- (und Service-) modus

Der Test- (und Service-) modus kann mit der optischen Schnittstelle (mit dem Programm HEAT3-SERVICE) oder durch Drücken der Taste deaktiviert werden:

- Durch kurzes Drücken der Taste "tESt OFF" auf dem Display auswählen;
- Taste gedrückt halten und den Testmodus deaktivieren (die Anzeige "TEST" erlischt auf dem Display).

Der Test- (und Service-) modus deaktiviert sich automatisch nach Ablauf von 12 Stunden nach der Aktivierung.

ÜBERPRÜFUNG

Die messtechnische Steuerung der Parameter des Messgeräts erfolgt gemäß LST EN1434-5.

TRANSPORT UND LAGERUNG

Die verpackten Messgeräte können mit allen abgedeckten Fahrzeugen transportiert werden. Während des Transports müssen die Messgeräte zuverlässig vor Stößen geschützt und gegen Bewegung im Fahrzeug gesichert werden. Die Messgeräte müssen vor mechanischen Schäden und Stößen geschützt werden. Die Räume, wo die Messgerät gelagert werden, müssen frei von aggressiven, korrosiven Materialien sein.

Transport- und Lagerungsbedingungen:

- Temperatur: -25 bis +35 °C
- Luftfeuchtigkeit: max. 60%.

Anhang A

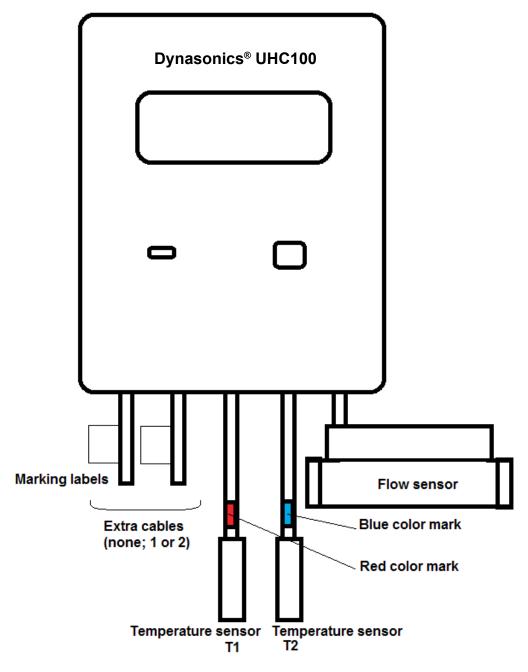


Abbildung 5: Messgerät-Anschlussdiagramm

Einsatzzweck des Kabels	Kabelmarkierung***	Einsatzzweck des Drahts	Drahtfarbe
M-Bus-1-Schnittstelle	MBUS1	Leitung	braun
		Leitung	weiß
M-Bus-2-Schnittstelle	MBUS2	Leitung	braun
		Leitung	weiß
M-Bus-Schnittstellen (zwei) *	MBUS	MBus1-Leitung	braun
		MBus1-Leitung	weiß
		MBus2-Leitung	gelb
		MBus2-Leitung	grün
1. Impulsein-/ausgang	PULS1	Impulse (+)	braun
		Gemeinsam (-)	weiß
2. Impulsein-/ausgang	PULS2	Impulse (+)	braun
		Gemeinsam (-)	weiß
Impulsein-/ausgänge (zwei) *	PULS	Impulse1 (+)	gelb
		Gemeinsam1 (-)	grün
		Impulse2 (+)	braun
		Gemeinsam2 (-)	weiß
ModBus®-Schnittstelle	MODBUS	Leitung A	braun
		Leitung B	weiß
		24 V AC/DC**	gelb
		24 V AC/DC**	grün
CL-Schnittstelle	CL	CL+	braun
		CL-	weiß
MiniBus-Schnittstelle	MINIBUS	Leitung+	braun
		Leitung-	weiß
Für externe Stromversorgung von 230V AC Stromquelle	230 V AC	230 V L	braun
		230 V N	weiß
Für externe Stromversorgung von 24-V-AC-	24 V AC/DC	24 V AC/DC	braun
Quelle		24 V AC/DC	weiß

^{*}Option für das Gehäuse, wenn zwei zusätzliche Kabel gleichzeitig enthalten sind.

Tabelle 4: Einsatzzweck und Markierung der zusätzlichen Kabel des Wärmezählers

^{**}Nicht verwendet, wenn das Messgerät von einer externen Stromquelle betrieben wird.

^{***}Wenn kein zweites zusätzliches Kabel enthalten ist, wird das M-Bus1-Kabel nicht extra gekennzeichnet.

Anhang B

Gesamtabmessungen des Rechenwerks des Dynasonics® UHC100-Wärmemengenzählers

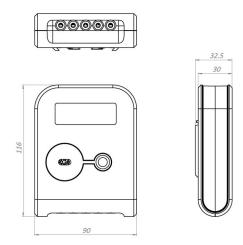


Abbildung 6: Gesamtabmessungen des Rechenwerks des Dynasonics® UHC100-Wärmemengenzählers

Größen und Abmessungen des Dynasonics® UHC100-Wärmemengenzählers

a)

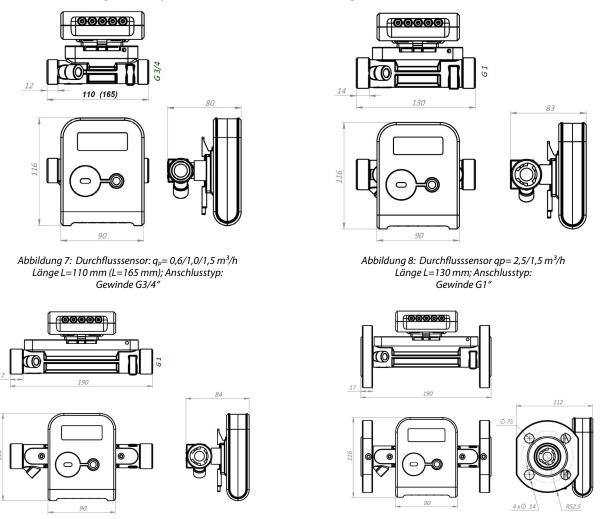


Abbildung 9: Durchflusssensor: $q_p = 0.6/1,0/1,5/2,5 \text{ m}^3/h; L=190 \text{ mm}$ a) Anschlusstyp: Gewinde G2"; b) Anschlusstyp: Flansch DN20

b)

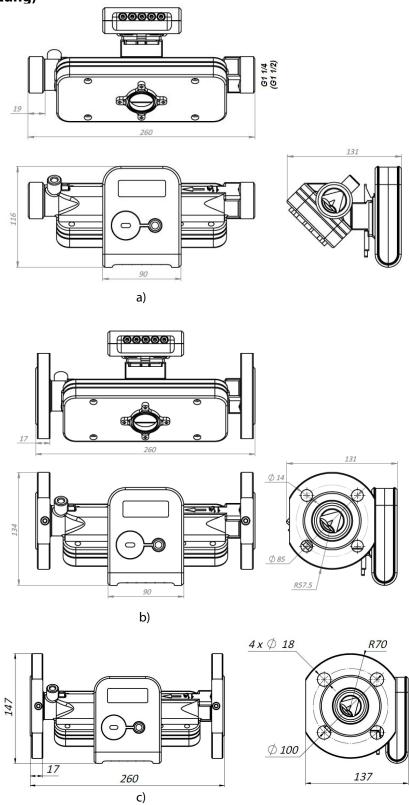
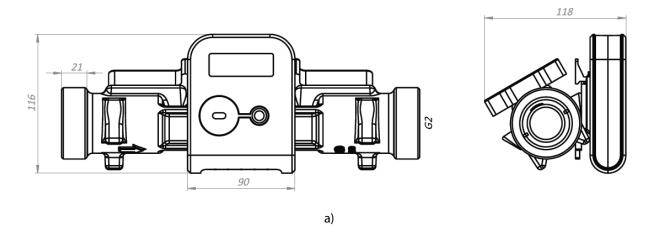



Abbildung 10: Durchflusssensor q_p = 3,5/6,0 m³/h; L=260 mm a) Anschlusstyp: Gewinde G11/4" (G1 1/2"); b) Anschlusstyp: Flansch DN25; c) Anschlusstyp: Flansch DN32

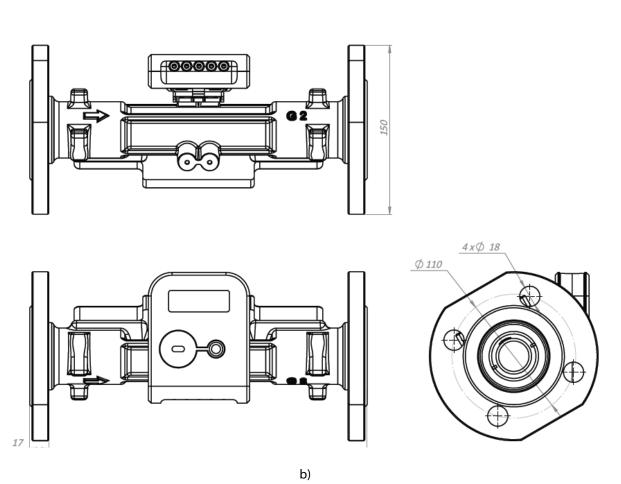


Abbildung 11: Durchflusssensor q_p = 10,0 m³/h; L=300 mm a) Anschlusstyp: Gewinde G2"; b) Anschlusstyp: Flansch DN40

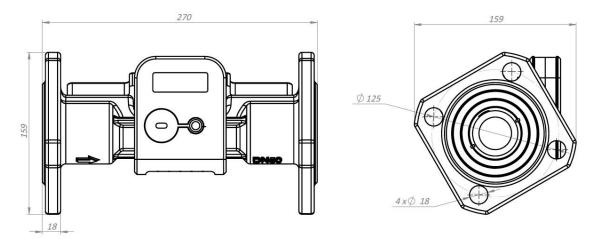


Abbildung 12: Durchflusssensor q_p = 15 m^3/h L=270 mm; Anschlusstyp: Flansch DN50

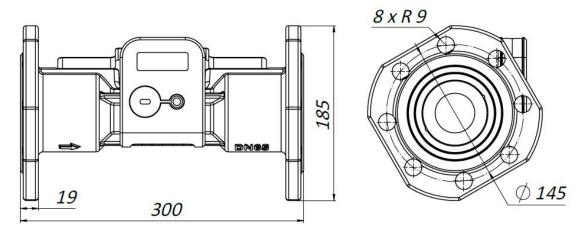


Abbildung 13: Durchflusssensor q_p = 25 m^3/h L=300 mm; Anschlusstyp: Flansch DN65

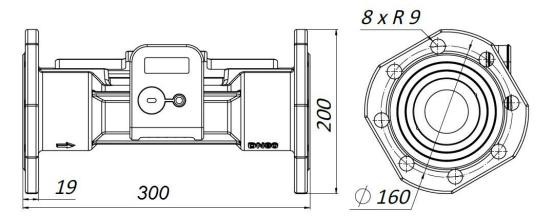


Abbildung 14: Durchflusssensor: q_p = 40 m³/h; L=300 mm; Anschlusstyp: Flansch DN80

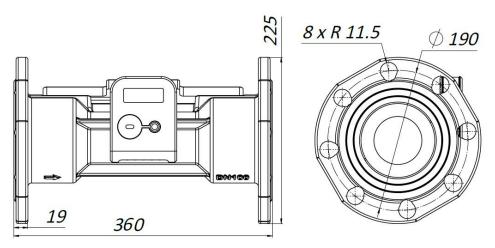


Abbildung 15: Durchflusssensor: $q_p = 60 \text{ m}^3/\text{h}$; L=360 mm; Anschlusstyp: Flansch DN100

Gesamtabmessungen der Temperatursensoren

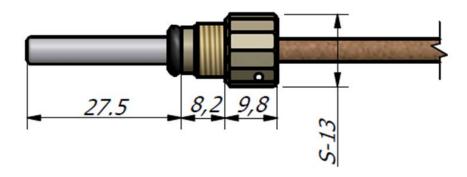


Abbildung 16: Gesamtabmessungen der Temperatursensoren vom Typ DS

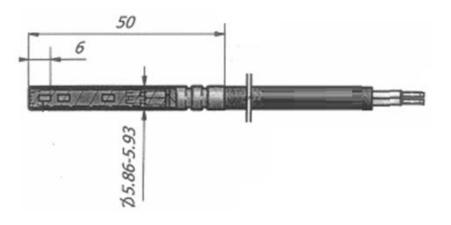
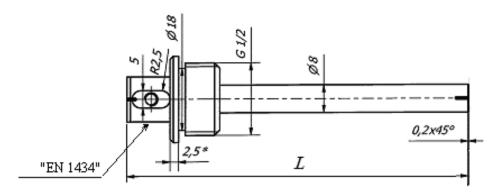
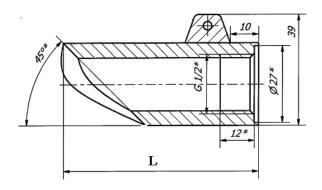
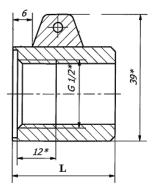




Abbildung 17: Gesamtabmessungen der Temperatursensoren vom Typ PL



Nenndurchmesser des Rohrs, mm	Gesamttaschenlänge L, mm	
DN20 bis DN100	100	
DN125 bis DN150	135	
DN200	225	

a) Abmessungen der Schutztaschen der Temperatursensoren vom Typ PL

Nenndurchmesser des Rohrs, mm	L, mm	
DN20	79,3	
DN25	69	
DN32, DN40	59	
DN50	49	

Nenndurchmesser des Rohrs, mm	L, mm	
DN65, DN80, DN125, DN150	32	
DN100	18	
DN200	90	

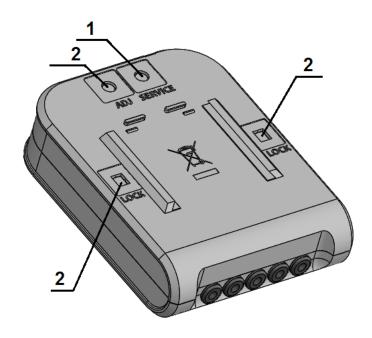
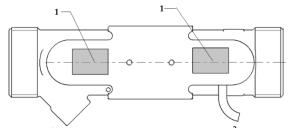
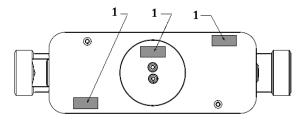
wenn Rohr DN < 65 mm

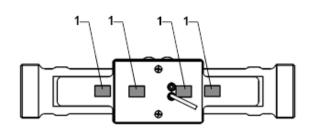
wenn Rohr DN ≥ 65 mm

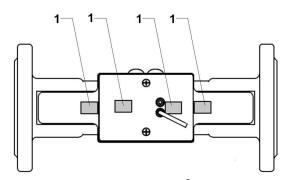
b) Abmessungen der Befestigungsbuchse der Schutztasche des Temperatursensors vom Typ PL

Abbildung 18: Abmessungen der Befestigungsbuchse der Schutztasche des Temperatursensors vom Typ PL

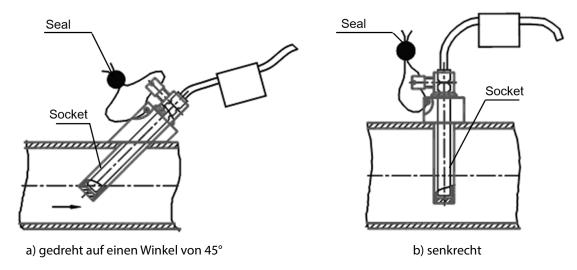
Anhang C

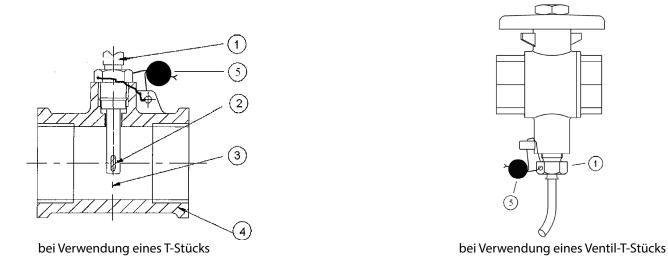

Abbildung 19: Abdichtungsdiagramm des Rechenwerks (auf der Rückseite der Box): Eine zusätzliche Abdichtung muss nur vorgenommen werden, wenn die durchbrechbaren Trennwände beschädigt sind. (1 – Herstellerabdichtung wird nach dem Einbau angebracht; 2 – Prüfklebedichtungen werden angebracht)


a) Durchflusssensor $q_p = 0.6/1,0/1,5/2,5 \text{ m}^3/\text{h}$ Dichtung

b) Durchflusssensor $q_p = 3.5/6.0 \text{ m}^3/\text{h}$ Dichtung



a) Durchflusssensor $q_p = 10.0 \text{ m}^3/\text{h}$ Dichtung



b) Durchflusssensor $q_p = 15.0 \text{ m}^3/\text{h}$ Dichtung

Abbildung 20: Abdichtungsdiagramm der Durchflusssensoren (1 – Garantieklebedichtung des Herstellers wird angebracht)

a) Installation eines PL-Temperatursensors in der Rohrleitung und entsprechendes Abdichtungsdiagramm

b) Installation eines DS-Temperatursensors in der Rohrleitung und entsprechendes Abdichtungsdiagramm

Abbildung 21: Installationsdiagramm zum Einbau der Temperatursensoren in der Rohrleitung mit entsprechender Abdichtung

RETOURE / UNBEDENKLICHKEITSERKLÄRUNG

Sie finden den Antrag zur Retoure unter www.badgermeter.de/de/service/warenruecksendung

Badger Meter Subsidiary of Badger Meter, Inc.

Vertrieb durch:
H. Hermann Ehlers GmbH
An der Autobahn 45
28876 Oyten
https://www.ehlersgmbh.com
Verkauf@EhlersGmbH.de