H. HERMANN EHLERS GMBH

Fördern - Messen - Regeln - Dosieren - Verdichten Ingenieurbüro - Werksvertretungen

FLUXUS® ADM 6725

Der FLUXUS® ADM 6725 ist ein tragbarer Ultraschall-Durchflußmesser, der sich dank Clamp-On-Technik und netzunabhängige Stromversorgung ideal für Servicearbeiten eignet.

Wie bei allen Geräten der FLUXUS® ADM Baureihe sorgen der digitale Signalprozessor (DSP) und die hohe Anzahl von Meßzyklen für stabile und zuverlässige Ergebnisse auch unter schwierigen Meßbedingungen.

Die Bedienung des Durchflußmessers wird durch einen klar strukturierten und leicht nachzuvollziehenden Bedienungsdialog besonders einfach.

Jedes mit dem Gerät gelieferte Sensorpaar ist kalibriert. Die Kalibrierdaten mit Sensorkennung und Sensorparametern sind in den Sensoren permanent gespeichert und werden beim Anschließen automatisch an den Meßumformer übergeben. Die Bedienung wird dadurch vereinfacht und ein Nullpunktabgleich erübrigt sich.

Die Sensoren und der Kabelmantel sind aus Edelstahl gefertigt und für den Einsatz in rauher Industrieumgebung konzipiert. Wasserdichte Sensoren und feste Sensorverkabelung garantieren auch langfristig gute Meßergebnisse.

Merkmale

- Geringer Installationsaufwand, niedrige Montagekosten
- Messung ist unabhängig von Leitfähigkeit und Druck des Mediums
- Kein Druckverlust, keine Leckagemöglichkeiten
- Keine Rohrleitungsunterbrechung/Anlagenstillstand erforderlich.
- Keine zusätzlichen Armaturen zur Wartung erforderlich.
- Totraumfreie, hygienisch einwandfreie Messung, Reinstwassergeeignet
- Kein Medienkontakt, keine Korrosion bei chemisch aggressiven Medien
- Preisvorteil bei der Anwendung für große Rohrnennweiten, hohe Druckstufen etc.
- Geringe Lagerhaltungskosten da der Hauptnennweitenbereich durch nur 2 Sensoren abgedeckt wird.

Technische Daten

Messung

3	
Meßverfahren:	Ultraschall-Laufzeitdifferenz- Korrelationsverfahren
Strömungsgeschw.:	(0,0125) m/s
Auflösung:	0,025 cm/s
Reproduzierbarkeit:	$0,15\%$ v. MW \pm 0,01 m/s
Meßwertabweichung	(für rotationssymmetrisches, voll ausgebildetes Strömungsprofil)
- Volumenfluß։	\pm 1%3% v. MW \pm 0,01 m/s je nach Applikation \pm 0,5% v. MW \pm 0,01 m/s
	bei Prozeßkalibrierung
- Pfadgeschwind.:	\pm 0,5% v. MW \pm 0,01 m/s
Meßbare Flüssigkeiten:	alle akustisch leitfähigen Flüssig- keiten mit Gas- und Feststoff- anteil < 10% des Volumens

Meßumformer

Gehäuse	
- Gewicht:	ca. 3,9 kg
- Schutzgrad:	IP54 gem. EN60529
- Werkstoff:	Aluminium, pulverbeschichtet
- Abmessungen: (BxHxT)	(270 x 100 x 180) mm (ohne Griff)
Kanalzahl:	2
Hilfsenergie:	Akku (6 V/4 Ah) Netzbetrieb (100-240) VAC
Dauerbetrieb mit Akku:	>10 h
Anzeige:	2 x 16 Zeichen, Punktmatrix, hintergrundbeleuchtet
Betriebstemperatur:	-10°C 60°C

An der Autobahn 45 ♦ 28876 Oyten ♦ Tel. 04207/91 21-0 ♦ Fax 04207/91 21 41 Email <u>verkauf@ehlersgmbh.de</u> ♦ Home <u>http://www.ehlers-oyten.de</u>

Meßumformer (Fort.)

Leistungsaufnahme:	< 15 W
Signaldämpfung:	(0100) s, einstellbar
Meßzyklus:	(1001000) Hz (1 Kanal)
Ansprechzeit:	1 s (1 Kanal), 70 ms opt.

	(
Meßfunktionen	
Meßgrößen:	Volumenstrom, Massestrom, Strömungsgeschwindigkeit, Wärmestrom
Mengenzähler:	Volumen, Masse, Wärme
Berechnungs- funktionen:	Mittelwert/Differenz/Summe
Sprache (Bedienerdialog):	Dänisch, Deutsch, Englisch, Französisch, Holländisch, Norwegisch, Polnisch, Tschechisch, Spanisch

Meßwertspeicher

speicherbare Werte:	alle Meßgrößen und totalisierte Meßgrößen
Größe:	>100.000

Kommunikation

Schnittstelle: RS232

Daten: aktueller Meßwert, gespeicherte

Meßwerte, Parametersätze

Software FluxData (optional)

Funktion:	Auslesen der Meßdaten/Parametersätze, graphische Ansicht, Konvertierung in andere Formate
Betriehssysteme:	Alle Windows TM Versionen

Prozeßeingänge

- Alle Eingänge sind galvanisch vom Grundgerät getrennt. - Es können maximal 4 Eingänge installiert werden. PT100 in Vierleitertechnik Temperatur - Meßbereich: -50°C...400°C 0,1 K - Auflösung: - Genauigkeit: $\pm (0.2 \text{ K} + 0.1\% \text{ v. MW})$ Strom $R_i = 50 \Omega$ - Meßbereich: aktiv: (0...20) mA passiv: (-20...20) mA - Genauigkeit: 0,1% v. MW \pm 10 μ A Spannung $R_i = 1 M\Omega$ - Meßbereich: (0...1) V oder (0...10) V $0...1 \text{ V: } 0.1\% \text{ v. MW} \pm 1 \text{ mV}$ - Genauigkeit: $0...10 \text{ V: } 0.1\% \text{ v. MW} \pm 10 \text{ mV}$

Prozeßausgänge

- Alle Ausgänge sind galvanisch vom Grundgerät getrennt.

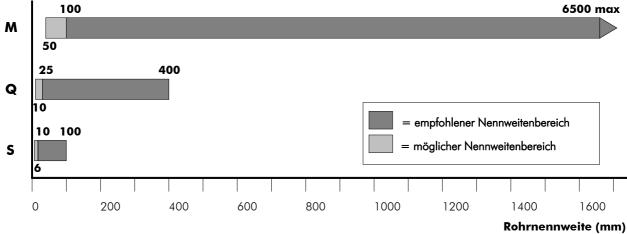
- Die maximale Anzahl von Ausgängen, die installiert werden können, hängt vom Ausgangstyp ab. Wenden Sie sich an Flexim für weitere Informationen.

Strom	aktiv: Rext $< 500 \Omega$
	passiv: Uext $<$ 24 V, Rext $<$ 1 k Ω
- Meßbereich:	(0/420) mA
- Genauigkeit:	0,1% v. MW \pm 15 μ A
Spannung	$Ri = 500 \Omega$
- Meßbereich:	(01) V oder (010) V
- Genauigkeit:	01 V: 0,1% v. MW ± 1 mV 010 V: 0,1% v. MW ± 10 mV
Frequenz	open collector: 24 V/4 mA totem pool: 5 V/4 mA
- Meßbereich:	01 kHz oder 010 kHz
Binär	open collector: 24 V/4 mA reed contact: 48 V/0,1 A totem pool: 5 V/4 mA
als Status-Ausgang:	Grenzwert, Vorzeichenwechsel oder Fehler
als Impuls-Ausgang:	Wertigkeit: (0,011000) Einh. Breite: (801000) ms

Durchflußsensoren (Clamp-On)			
Typ M2N, M2E, M3N			
spezifizierter (möglicher)			
Nennweitenbereich:	M2N,M2E: (50)1002500 mm M3N: (50)1006500 mm		
Abmessungen:	(60 x 30 x 33,5) mm		
Werkstoff:	Gehäuse: Edelstahl Kontaktfläche: PEEK (M2N) oder Polyimid (M2E)		
Betriebstemperatur:	M2N,M3N: -30°C130°C M2E: -30°C200°C, kurzzeitig 300°C		
Schutzgrad:	IP65 gem. EN60529 M2N, M3N: IP68 auf Anfrage		
Typ Q3N, Q3E			
spezifizierter (möglicher)	(10)25 400 mm		

	_
Schutzgrad:	IP65 gem. EN60529 M2N, M3N: IP68 auf Anfrage
Typ Q3N, Q3E	
spezifizierter (möglicher) Nennweitenbereich:	(10)25 400 mm
Abmessungen:	(42,5 x 18 x 21,5) mm
Werkstoff:	Gehäuse: Edelstahl Kontaktfläche: PEEK (Q3N) oder Polyimid (Q3E)
Betriebstemperatur:	Q3N: -30°C130°C Q3E: -30°C200°C, kurzzeitig 300°C
Schutzgrad:	IP65 gem. EN60529 Q3N: IP68 auf Anfrage

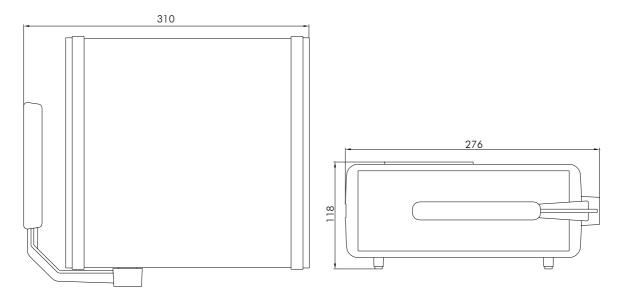
Wanddickenmeßköpfe


Meßbereich:	(1,0200) mm
Auflösung:	0,01 mm
Linearität:	0,1 mm
Betriebstemperatur	
- Standard:	-20°C+60°C
- Hochtemperatur:	0°C+200°C.

kurzeitig bis +540°C

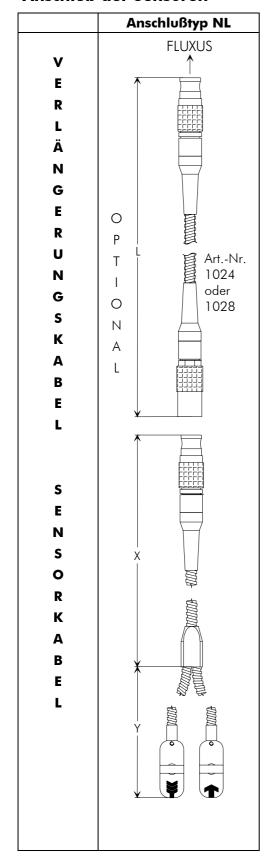
An der Autobahn 45 ♦ 28876 Oyten ♦ Tel. 04207/91 21-0 ♦ Fax 04207/91 21 41 Email verkauf@ehlersgmbh.de ◆ Home http://www.ehlers-oyten.de

Auswahl der Sensoren


Der empfohlene Nennweitenbereich ist der Bereich, der unter normalen Betriebsbedingungen (Dämpfung des Signals hauptsächlich durch das Medium, keine Gas- oder Feststoffanteile) durch einen Sensor abgedeckt wird. Der **mögliche Nennweitenbereich** ist der Bereich, in dem unter guten Meßbedingungen gemessen werden kann.

Empfohlener minimaler und maximaler Meßbereich

Nennweite (mm)	minimaler Meßbereich (m³/h)		Me	aximaler Bbereich (m³/h)
15	0 bis	0,19	0 bis	15,90
25	0 bis	0,53	0 bis	44,18
50	0 bis	2,12	0 bis	177
75	0 bis	4,77	0 bis	398
100	0 bis	8,48	0 bis	707
125	0 bis	13,25	0 bis	1.104
150	0 bis	19,09	0 bis	1.590
200	0 bis	33,93	0 bis	2.827

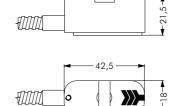

Nennweite (mm)	minimaler Meßbereich (m³/h)	maximaler Meßbereich (m³/h)
250	0 bis 53,01	0 bis 4.418
300	0 bis 76,34	0 bis 6.362
400	0 bis 136	0 bis 11.310
500	0 bis 212	0 bis 17.670
1000	0 bis 848	0 bis 28.300
1500	0 bis 1.909	0 bis 63.500
2000	0 bis 3.400	0 bis 110.000

Abmessungen des Gehäuses (in mm)

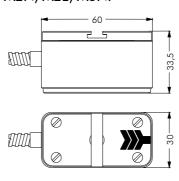
An der Autobahn 45 ♦ 28876 Oyten ♦ Tel. 04207/91 21-0 ♦ Fax 04207/91 21 41 Email <u>verkauf@ehlersgmbh.de</u> ♦ Home <u>http://www.ehlers-oyten.de</u>

Anschluß der Sensoren

Längen X und Y des Sensorkabels



Länge des Verlängerungskabels


Länge L = [XX] in m, wobei die max. Länge **50 m** für kunststoffummantelte Kabel und **15 m** für edelstahlummantelte Kabel beträgt.

Maße der Sensoren (in mm)

Q3N, Q3E:

M2N, M2E, M3N:

